python3 线程池源码解析_Python:线程、进程与协程(3)——Queue模块及源码分析

Queue模块是提供队列操作的模块,队列是线程间最常用的交换数据的形式。该模块提供了三种队列:

Queue.Queue(maxsize):先进先出,maxsize是队列的大小,其值为非正数时为无线循环队列

Queue.LifoQueue(maxsize):后进先出,相当于栈

Queue.PriorityQueue(maxsize):优先级队列。

其中LifoQueue,PriorityQueue是Queue的子类。三者拥有以下共同的方法:

qsize():返回近似的队列大小。为什么要加“近似”二字呢?因为当该值大于0的时候并不保证并发执行的时候get()方法不被阻塞,同样,对于put()方法有效。

empty():返回布尔值,队列为空时,返回True,反之返回False。

full():当设定了队列大小的时候,如果队列满了,则返回True,否则返回False。

put(item[,block[,timeout]]):向队列里添加元素item,block设置为False的时候,如果队列满了则抛出Full异常。如果block设置为True,timeout设置为None时,则会一种等到有空位的时候再添加进队列;否则会根据timeout设定的超时值抛出Full异常。

put_nowwait(item):等价与put(item,False)。block设置为False的时候,如果队列为空,则抛出Empty异常。如果block设置为True,timeout设置为None时,则会一种等到有空位的时候再添加进队列;否则会根据timeout设定的超时值抛出Empty异常。

get([block[,timeout]]):从队列中删除元素并返回该元素的值,如果timeout是一个正数,它会阻塞最多超时秒数,并且如果在该时间内没有可用的项目,则引发Empty异常。

get_nowwait():等价于get(False)

task_done():发送信号表明入列任务已完成,经常在消费者线程中用到。

join():阻塞直至队列所有元素处理完毕,然后再处理其它操作。

(一)源码分析

Queue模块用起来很简单很简单,但我觉得有必要把该模块的相关源代码贴出来分析下,会学到不少东西,看看大神们写的代码多么美观,多么结构化模块化,再想想自己写的代码,都是泪呀,来学习学习。为了缩减篇幅,源码的注释部分被删减掉。from time import time as _time

try:

import threading as _threading

except ImportError:

import dummy_threading as _threading

from collections import deque

import heapq

__all__ = ['Empty', 'Full', 'Queue', 'PriorityQueue', 'LifoQueue']

class Empty(Exception):

"Exception raised by Queue.get(block=0)/get_nowait()."

pass

class Full(Exception):

"Exception raised by Queue.put(block=0)/put_nowait()."

pass

class Queue:

def __init__(self, maxsize=0):

self.maxsize = maxsize

self._init(maxsize)

self.mutex = _threading.Lock()

self.not_empty = _threading.Condition(self.mutex)

self.not_full = _threading.Condition(self.mutex)

self.all_tasks_done = _threading.Condition(self.mutex)

self.unfinished_tasks =

def get_nowait(self):

return self.get(False)

def _init(self, maxsize):

self.queue = deque()

def _qsize(self, len=len):

return len(self.queue)

def _put(self, item):

self.queue.append(item)

def _get(self):

return self.queue.popleft()

通过后面的几个函数分析知道,Queue对象是在collections模块的queue基础上(关于collections模块参考Python:使用Counter进行计数统计及collections模块),加上threading模块互斥锁和条件变量封装的。

deque是一个双端队列,很适用于队列和栈。上面的Queue对象就是一个先进先出的队列,所以首先_init()函数定义了一个双端队列,然后它的定义了_put()和_get()函数,它们分别是从双端队列右边添加元素、左边删除元素,这就构成了一个先进先出队列,同理很容易想到LifoQueue(后进先出队列)的实现了,保证队列右边添加右边删除就可以。可以贴出源代码看看。class LifoQueue(Queue):

'''Variant of Queue that retrieves most recently added entries first.'''

def _init(self, maxsize):

self.queue = []

def _qsize(self, len=len):

return len(self.queue)

def _put(self, item):

self.queue.append(item)

def _get(self):

return self.queue.pop()

虽然它的"queue"没有用queue(),用列表也是一样的,因为列表append()和pop()操作是在最右边添加元素和删除最右边元素。

再来看看PriorityQueue,他是个优先级队列,这里用到了heapq模块的heappush()和heappop()两个函数。heapq模块对堆这种数据结构进行了模块化,可以建立这种数据结构,同时heapq模块也提供了相应的方法来对堆做操作。其中_init()函数里self.queue=[]可以看作是建立了一个空堆。heappush() 往堆中插入一条新的值 ,heappop() 从堆中弹出最小值,这就可以实现优先级(关于heapq模块这里这是简单的介绍)。源代码如下:class PriorityQueue(Queue):

'''Variant of Queue that retrieves open entries in priority order (lowest first).

Entries are typically tuples of the form:  (priority number, data).

'''

def _init(self, maxsize):

self.queue = []

def _qsize(self, len=len):

return len(self.queue)

def _put(self, item, heappush=heapq.heappush):

heappush(self.queue, item)

def _get(self, heappop=heapq.heappop):

return heappop(self.queue)

基本的数据结构分析完了,接着分析其它的部分。

mutex 是个threading.Lock()对象,是互斥锁;not_empty、 not_full 、all_tasks_done这三个都是threading.Condition()对象,条件变量,而且维护的是同一把锁对象mutex(关于threading模块中Lock对象和Condition对象可参考上篇博文Python:线程、进程与协程(2)——threading模块)。

其中:

self.mutex互斥锁:任何获取队列的状态(empty(),qsize()等),或者修改队列的内容的操作(get,put等)都必须持有该互斥锁。acquire()获取锁,release()释放锁。同时该互斥锁被三个条件变量共同维护。

self.not_empty条件变量:线程添加数据到队列中后,会调用self.not_empty.notify()通知其它线程,然后唤醒一个移除元素的线程。

self.not_full条件变量:当一个元素被移除出队列时,会唤醒一个添加元素的线程。

self.all_tasks_done条件变量 :在未完成任务的数量被删除至0时,通知所有任务完成

self.unfinished_tasks  : 定义未完成任务数量

再来看看主要方法:

(1)put()

源代码如下:def put(self, item, block=True, timeout=None):

self.not_full.acquire()                  #not_full获得锁

try:

if self.maxsize > 0:                 #如果队列长度有限制

if not block:                    #如果没阻塞

if self._qsize() == self.maxsize:   #如果队列满了抛异常

raise Full

elif timeout is None:           #有阻塞且超时为空,等待

while self._qsize() == self.maxsize:

self.not_full.wait()

elif timeout 

raise ValueError("'timeout' must be a non-negative number")

else:        #如果有阻塞,且超时非负时,结束时间=当前时间+超时时间

endtime = _time() + timeout

while self._qsize() == self.maxsize:

remaining = endtime - _time()

if remaining <= 0.0:       #到时后,抛异常

raise Full

#如果没到时,队列是满的就会一直被挂起,直到有“位置”腾出

self.not_full.wait(remaining)

self._put(item)                    #调用_put方法,添加元素

self.unfinished_tasks += 1         #未完成任务+1

self.not_empty.notify()             #通知非空,唤醒非空挂起的任务

finally:

self.not_full.release()            #not_full释放锁

默认情况下block为True,timeout为None。如果队列满则会等待,未满则会调用_put方法将进程加入deque中(后面介绍),并且未完成任务加1还会通知队列非空。

如果设置block参数为Flase,队列满时则会抛异常。如果设置了超时那么在时间到之前进行阻塞,时间一到抛异常。这个方法使用not_full对象进行操作。

(2)get()

源码如下:def get(self, block=True, timeout=None):

self.not_empty.acquire()                #not_empty获得锁

try:

if not block:                       #不阻塞时

if not self._qsize():           #队列为空时抛异常

raise Empty

elif timeout is None:               #不限时时,队列为空则会等待

while not self._qsize():

self.not_empty.wait()

elif timeout 

raise ValueError("'timeout' must be a non-negative number")

else:

endtime = _time() + timeout

while not self._qsize():

remaining = endtime - _time()

if remaining <= 0.0:

raise Empty

self.not_empty.wait(remaining)

item = self._get()                  #调用_get方法,移除并获得项目

self.not_full.notify()              #通知非满

return item                        #返回项目

finally:

self.not_empty.release()            #释放锁

逻辑跟put()函数一样,参数默认情况下队列空了则会等待,否则将会调用_get方法(往下看)移除并获得一个项,最后返回这个项。这个方法使用not_empty对象进行操作。

不过我觉得put()与get()两个函数结合起来理解比较好。not_full与not_empty代表的是两种不同操作类型的线程,not_full可以理解成is-not-full,即队列是否满了,默认是没有满,没有满时not_full这个条件变量才能获取锁,并做一些条件判断,只有符合条件才能向队列里加元素,添加成功后就会通知not_empty条件变量队列里不是空的,“我”刚刚添加进了一个元素,满足可以执行删除动作的基本条件了(队列不是空的,想想如果是空的执行删除动作就没有意义了),同时唤醒一些被挂起的执行移除动作的线程,让这些线程重新判断条件,如果条件准许就会执行删除动作,然后又通知not_full条件变量,告诉“它”队列不是满的,因为“我”刚才删除了一个元素(想想如果队列满了添加元素就添加不进呀,就没意义了),满足了添加元素的基本条件(队列不是满的),同时唤醒一些被挂起的执行添加动作的线程,这些线程又会进行条件判断,符合条件就会添加元素,否则继续挂起,依次类推,同时这样也保证了线程的安全。正与前面所说,当一个元素被移除出队列时,会唤醒一个添加元素的线程;当添加一个元素时会唤醒一个删除元素的线程。

这是我想了一段时间得出的一种我个人理解的解释,不知道对不对或者说合不合理,如果有大神对这部分知识很熟悉了解,欢迎留言批评指正。

(3)task_done()

源码如下:def task_done(self):

self.all_tasks_done.acquire()       #获得锁

try:

unfinished = self.unfinished_tasks - 1  #判断队列中一个线程的任务是否全部完成

if unfinished <= 0:                     #是则进行通知,或在过量调用时报异常

if unfinished 

raise ValueError('task_done() called too many times')

self.all_tasks_done.notify_all()

self.unfinished_tasks = unfinished      #否则未完成任务数量-1

finally:

self.all_tasks_done.release()           #最后释放锁

这个方法判断队列中一个线程的任务是否全部完成,首先会通过all_tasks_done对象获得锁,如果是则进行通知,最后释放锁。

(4)join()

源码如下:def join(self):

self.all_tasks_done.acquire()

try:

while self.unfinished_tasks:        #如果有未完成的任务,将调用wait()方法等待

self.all_tasks_done.wait()

finally:

self.all_tasks_done.release()

阻塞方法,当队列中有未完成进程时,调用join方法来阻塞,直到他们都完成。

其它的方法都比较简单,也比较好理解,有兴趣可以去看看Queue.py里的源码,要注意的是任何获取队列的状态(empty(),qsize()等),或者修改队列的内容的操作(get,put等)都必须持有互斥锁mutex。

(二)简单例子

(1)一个简单例子

实现一个线程不断生成一个随机数到一个队列中

实现一个线程从上面的队列里面不断的取出奇数

实现另外一个线程从上面的队列里面不断取出偶数import random,threading,time

from Queue import Queue

is_product = True

class Producer(threading.Thread):

"""生产数据"""

def __init__(self, t_name, queue):

threading.Thread.__init__(self,name=t_name)

self.data=queue

def run(self):

while 1:

if self.data.full():

global is_product

is_product = False

else:

if self.data.qsize() <= 7:#队列长度小于等于7时添加元素

is_product = True

for i in range(2): #每次向队列里添加两个元素

randomnum=random.randint(1,99)

print "%s: %s is producing %d to the queue!" % (time.ctime(), self.getName(), randomnum)

self.data.put(randomnum,False) #将数据依次存入队列

time.sleep(1)

print "deque length is %s"%self.data.qsize()

else:

if is_product:

for i in range(2):  #

randomnum = random.randint(1, 99)

print "%s: %s is producing %d to the queue!" % (time.ctime(), self.getName(), randomnum)

self.data.put(randomnum,False)  # 将数据依次存入队列

time.sleep(1)

print "deque length is %s" % self.data.qsize()

else:

pass

print "%s: %s finished!" %(time.ctime(), self.getName())

#Consumer thread

class Consumer_even(threading.Thread):

def __init__(self,t_name,queue):

threading.Thread.__init__(self,name=t_name)

self.data=queue

def run(self):

while 1:

if self.data.qsize() > 7:#队列长度大于7时开始取元素

val_even = self.data.get(False)

if val_even%2==0:

print "%s: %s is consuming. %d in the queue is consumed!" % (time.ctime(),self.getName(),val_even)

time.sleep(2)

else:

self.data.put(val_even)

time.sleep(2)

print "deque length is %s" % self.data.qsize()

else:

pass

class Consumer_odd(threading.Thread):

def __init__(self,t_name,queue):

threading.Thread.__init__(self, name=t_name)

self.data=queue

def run(self):

while 1:

if self.data.qsize() > 7:

val_odd = self.data.get(False)

if val_odd%2!=0:

print "%s: %s is consuming. %d in the queue is consumed!" % (time.ctime(), self.getName(), val_odd)

time.sleep(2)

else:

self.data.put(val_odd)

time.sleep(2)

print "deque length is %s" % self.data.qsize()

else:

pass

#Main thread

def main():

queue = Queue(20)

producer = Producer('Pro.', queue)

consumer_even = Consumer_even('Con_even.', queue)

consumer_odd = Consumer_odd('Con_odd.',queue)

producer.start()

consumer_even.start()

consumer_odd.start()

producer.join()

consumer_even.join()

consumer_odd.join()

if __name__ == '__main__':

main()

这个例子跟上篇博文Python:线程、进程与协程(2)——threading模块中介绍Condition的例子很像,就是构造了一个长度为20的队列,当队列1元素个数小于8时就忘队列中添加元素,当队列满后,就不再添加,当队列元素大于7个时,才会取元素,否则不取元素。有兴趣的可以动手试试,仔细体会下。

(2)线程池

在使用多线程处理任务时也不是线程越多越好,由于在切换线程的时候,需要切换上下文环境,依然会造成cpu的大量开销。为解决这个问题,线程池的概念被提出来了。预先创建好一个较为优化的数量的线程,让过来的任务立刻能够使用,就形成了线程池。在python中,没有内置的较好的线程池模块,需要自己实现或使用第三方模块。#coding=utf-8

import queue

import threading

import contextlib

import time

StopEvent = object() # 创建空对象

class ThreadPool(object):

def __init__(self, max_num, max_task_num = None):

if max_task_num:

self.q = queue.Queue(max_task_num)

else:

self.q = queue.Queue()

self.max_num = max_num

self.cancel = False

self.terminal = False

self.generate_list = []

self.free_list = []

def run(self, func, args, callback=None):

"""

线程池执行一个任务

:param func: 任务函数

:param args: 任务函数所需参数

:param callback: 任务执行失败或成功后执行的回调函数,回调函数有两个参数1、任务函数执行状态;2、任务函数返回值(默认为None,即:不执行回调函数)

:return: 如果线程池已经终止,则返回True否则None

"""

if self.cancel:

return

if len(self.free_list) == 0 and len(self.generate_list) 

self.generate_thread()

w = (func, args, callback,)

self.q.put(w)

def generate_thread(self):

"""

创建一个线程

"""

t = threading.Thread(target=self.call)

t.start()

def call(self):

"""

循环去获取任务函数并执行任务函数

"""

current_thread = threading.currentThread

self.generate_list.append(current_thread)

event = self.q.get()

while event != StopEvent:

func, arguments, callback = event

try:

result = func(*arguments)

success = True

except Exception as e:

success = False

result = None

if callback is not None:

try:

callback(success, result)

except Exception as e:

pass

with self.worker_state(self.free_list, current_thread):

if self.terminal:

event = StopEvent

else:

event = self.q.get()

else:

self.generate_list.remove(current_thread)

def close(self):

"""

执行完所有的任务后,所有线程停止

"""

self.cancel = True

full_size = len(self.generate_list)

while full_size:

self.q.put(StopEvent)

full_size -= 1

def terminate(self):

"""

无论是否还有任务,终止线程

"""

self.terminal = True

while self.generate_list:

self.q.put(StopEvent)

self.q.empty()

@contextlib.contextmanager

def worker_state(self, state_list, worker_thread):

"""

用于记录线程中正在等待的线程数

"""

state_list.append(worker_thread)

try:

yield

finally:

state_list.remove(worker_thread)

# How to use

pool = ThreadPool(5)

def callback(status, result):

# status, execute action status

# result, execute action return value

pass

def action(i):

print(i)

for i in range(30):

ret = pool.run(action, (i,), callback)

time.sleep(5)

print(len(pool.generate_list), len(pool.free_list))

print(len(pool.generate_list), len(pool.free_list))

# pool.close()

# pool.terminate()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值