python中文版语言_《Python自然语言处理》中文版-纠错【更新中。。。】

最近在看《Python自然语言处理》中文版这本书,可能由于是从py2.x到py3.x,加上nltk的更新的原因,或者作者的一些笔误,在书中很多代码都运行不能通过,下面我就整理一下一点有问题的代码。

第一章:

p3.该处为小建议,书中没有错误:关于nltk.book的下载,最好下载到'/nltk_data'文件夹下,如'D:/nltk_data'

p7.text3.generate(). generate()函数用法已经过时,正在查找最新的方法。

p18.关于FreqDist()函数发生了更新,如果按照书上的代码键入,并不会得到预期的结果,可以用下面的方法进行改进来得到相同的结果:

>>>fdist1=FreqDist(text1)>>>len(fdist1)19317

>>>vocabulary1=sorted(fdist1.items(),key=lambda jj:jj[1],reverse=True)>>>s=[]>>>for i inrange(len(vocabulary1)):

s.append(vocabulary1[i][0])>>>print(s)

p22.FreqDist函数,和18页的问题是一样的,可以仿照上面的解决方法进行改进。

p32.babelize_shell() 该函数在nltk3.0中已经不再可用了,跳过该函数讲解部分。

第二章:

p48页:cfd=nltk.ConditionalFreqDist((target,file[:4]) for fileid in inaugural.fileids() for w in inaugural.words(fileid) for target in ['america','citizen'] if w.lower().startswith(target))  会显示出错

改正:将第一个括号内的file[:4]改为fileid[:4]即可。即:cfd=nltk.ConditionalFreqDist((target,fileid[:4]) for fileid in inaugural.fileids() for w in inaugural.words(fileid) for target in ['america','citizen'] if w.lower().startswith(target))

p51:代码最后一行cfd.plot(cumulative=True少了闭括号。

p56:>>>cfd 书上写的是不显示cfd里面的内容,而在Python3.X中,输入这句话会自动输出cfd里面的内容。

p58:使用双连词生成随机文本。输入nltk.bigrams(sent)并不会生成列表,需要写成:list(nltk.bigrams(sent))才能生成书上的形式。

p72:倒数第二行,>>>wn.synset('car.n.01').lemma_names忘记加括号,改为:>>>wn.synset('car.n.01').lemma_names()

p73:一开始的代码.definition和.examples和上面问题一样,需要加括号才能显示结果。本页上的其他函数也需要同样处理、

P85:如果使用py3,在使用urlopen时需要:from urllib.request import urlopen

P87:NLTK提供了辅助函数nltk.clean_html()这个函数现在不在支持,可以使用beautifulsoup库。

P116:在concordanc函数中,wc=width/4,在py3中会报错,应该改为wc=width//4.

P121:关于nltk.regexp_tokenize(text,pattern)并不会得到预期的效果,需要对pattern进行重写,具体重写代码如下:

pattern = r"""(?x) # set flag to allow verbose regexps

(?:[A-Z]\.)+ # abbreviations, e.g. U.S.A.

|\d+(?:\.\d+)?%? # numbers, incl. currency and percentages

|\w+(?:[-']\w+)* # words w/ optional internal hyphens/apostrophe

|\.\.\. # ellipsis

|(?:[.,;"'?():-_`]) # special characters with meanings

"""

重写以后在执行就会出现预期的结果。

由于是刚开始看,所以后面的还没看到,本文也会持续更新新遇到的错误,也欢迎大家补充。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值