知乎上很多概率论上的错误答案,都是假定了整数上存在均匀概率分布。
事实上这意味着一个定义在整数上的,平移不变的概率分布,即
这个概率分布显然不存在,因为假如一个整点的概率为p,则每个整点的概率都是p。如果p大于0,足够多整点的概率大于1. 如果p等于0,则
写这篇文章,主要是看到了一个让我惊讶的结果:如果把上面的可列可加性改成有限可加性,结论就不一样了。
也就是说,存在一个整数的任意子集到[0,1]的映射,满足平移不变性和有限可加性(有限个互斥集合的并的概率等于各自概率之和),并且整数集自己映成1。
出处见上。5.4定义了一个群von Neumann amenable,是说上面的有界函数存在平移不变的“均值”。5.5说von Neumann amenable等价于存在有限可加、平移不变的概率“测度”。可以证明整数集是von Neumann amenable,也就是说存在有限可加、平移不变的概率“测度”。但下面也说了,这个有限可加、平移不变的概率“测度”的构造,要求选择公理。所以我们无法在此显式地写出这个“均匀分布”。其实可以写成
但U这个free ultrafilter本身不能算是个显式。
另外可以参考How to construct a continuous finite additive measure on the natural numbers, 里面说只靠ZF公理体系不够,需要加上选择公理(ZFC)才行。
(我不太熟悉集合论,不知道上面有没有小错误。)
整数集为何是von Neumann amenable:一个有限生成群von Neumann amenable等价于其任意Cayley graph(对于整数集就是
这个奇怪的例子也说明了在Kolmogorov的概率论公理体系里,如果把可列可加变成有限可加,得到的系统会有一些不一样的性质。