概率论与数理统计教程(三)-多维随机变量及其分布05:条件分布与条件期望

本文详细介绍了条件分布和条件期望的概念,特别是在二维随机变量中的应用。通过离散和连续随机变量的例子,解释了如何计算条件分布和条件期望,并给出了全概率公式和贝叶斯公式。此外,还讨论了条件期望作为随机变量的特性以及在实际问题中的应用,如矿工逃离矿井的时间和工厂平均利润的计算。
摘要由CSDN通过智能技术生成

§ 3.5 条件分布与条件期望
二维随机变量 ( X , Y ) (X, Y) (X,Y) 之间主要表现为独立与相依两类关系.
由于在许多问题中有关的随机变量取值往往是彼此有影响的,
这就使得条件分布成为研究变量之间的相依关系的一个有力工具.
3.5.1 条件分布
对二维随机变量 ( X , Y ) (X, Y) (X,Y) 而言,所谓随机变量 X X X 的条件分布,就是在给定 Y Y Y
取某个值的条件下 X X X 的分布. 蹵如, 记 X X X 为人的体重, Y Y Y 为人的身高, 则
X X X Y Y Y 之间一般有相依关系. 现在如果限定 Y = 1.7 (   m ) Y=1.7(\mathrm{~m}) Y=1.7( m),
在这个条件下, 体重 X X X 的分布显然与 X X X 的无条件分布
(无此限制下体重的分布) 会有很大的不同. 本节将给出条件分布的定义,
以便进一步在条件分布的基础上给出条件期望的概念.
一、离散随机变量的条件分布
设二维离散随机变量 ( X , Y ) (X, Y) (X,Y) 的联合分布列为
p i j = P ( X = x i , Y = y j ) , i = 1 , 2 , ⋯   , j = 1 , 2 , ⋯   . p_{i j}=P\left(X=x_{i}, Y=y_{j}\right), \quad i=1,2, \cdots, \quad j=1,2, \cdots . pij=P(X=xi,Y=yj),i=1,2,,j=1,2,.
仿照条件概率的定义,我们很容易地给出如下离散随机变量的条件分布列.
定义 3.5.1 对一切使
P ( Y = y j ) = p . j = ∑ i = 1 ∞ p i j > 0 P\left(Y=y_{j}\right)=p_{. j}=\sum_{i=1}^{\infty} p_{i j}>0 P(Y=yj)=p.j=i=1pij>0
y j y_{j} yj, 称
p i j j = P ( X = x i ∣ Y = y j ) = P ( X = x i , Y = y j ) P ( Y = y j ) = p i j p ⋅ j , i = 1 , 2 , ⋯ p_{i j j}=P\left(X=x_{i} \mid Y=y_{j}\right)=\frac{P\left(X=x_{i}, Y=y_{j}\right)}{P\left(Y=y_{j}\right)}=\frac{p_{i j}}{p_{\cdot j}}, \quad i=1,2, \cdots pijj=P(X=xiY=yj)=P(Y=yj)P(X=xi,Y=yj)=pjpij,i=1,2,
为给定 Y = y j Y=y_{j} Y=yj 条件下 X X X 的条件分布列.
同理, 对一切使
P ( X = x i ) = p i . = ∑ j = 1 ∞ p i j > 0 P\left(X=x_{i}\right)=p_{i} .=\sum_{j=1}^{\infty} p_{i j}>0 P(X=xi)=pi.=j=1pij>0
x i x_{i} xi, 称
p j i = P ( Y = y j ∣ X = x i ) = P ( X = x i , Y = y j ) P ( X = x i ) = p i j p i , j = 1 , 2 , ⋯ p_{j i}=P\left(Y=y_{j} \mid X=x_{i}\right)=\frac{P\left(X=x_{i}, Y=y_{j}\right)}{P\left(X=x_{i}\right)}=\frac{p_{i j}}{p_{i}}, \quad j=1,2, \cdots pji=P(Y=yjX=xi)=P(X=xi)P(X=xi,Y=yj)=pipij,j=1,2,
为给定 X = x i X=x_{i} X=xi 条件下 Y Y Y 的条件分布列.
有了条件分布列, 我们就可以给出离散随机变量的条件分布函数.
定义 3.5.2 给定 Y = y j Y=y_{j} Y=yj 条件下 X X X 的条件分布函数为
F ( x ∣ y j ) = ∑ x i ⩽ x P ( X = x i ∣ Y = y j ) = ∑ x i ⩽ x p i j , F\left(x \mid y_{j}\right)=\sum_{x_{i} \leqslant x} P\left(X=x_{i} \mid Y=y_{j}\right)=\sum_{x_{i} \leqslant x} p_{i j}, F(xyj)=xixP(X=xiY=yj)=xixpij,
给定 X = x i X=x_{i} X=xi 条件下 Y Y Y 的条件分布函数为
F ( y ∣ x i ) = ∑ y j ⩽ y P ( Y = y j ∣ X = x i ) = ∑ y j ⩽ y p j i . F\left(y \mid x_{i}\right)=\sum_{y_{j} \leqslant y} P\left(Y=y_{j} \mid X=x_{i}\right)=\sum_{y_{j} \leqslant y} p_{j i} . F(yxi)=yjyP(Y=yjX=xi)=yjypji.
例 3.5.1 设二维离散随机变量 ( X , Y ) (X, Y) (X,Y) 的联合分布列为


            1     2      3     0.6
   1       0.1   0.3    0.2    0.4

p . j p_{. j} p.j 0.2 0.05 0.15 1.0


因为 P ( X = 1 ) = p 1 . = 0.6 P(X=1)=p_{1} .=0.6 P(X=1)=p1.=0.6, 所以用第一行各元素分别除以 0.6 , 就可得给定
X = 1 X=1 X=1 下, Y Y Y 的条件分布列为
Y ∣ X = 1 Y \mid X=1 YX=1 1 2 3


   $P$        $1 / 6$   $1 / 2$   $1 / 3$

用第二行各元素分别除以 0.4 , 就可得给定 X = 2 X=2 X=2 下, Y Y Y 的条件分布列为
Y ∣ X = 2 Y \mid X=2 YX=2 1 2 3


   $P$        $1 / 2$   $1 / 8$   $3 / 8$

用第一列各元素分别除以 0.3 , 就可得给定 Y = 1 Y=1 Y=1 下, X X X 的条件分布列为
X ∣ Y = 1 X \mid Y=1 XY=1 1 2


   $P$        $1 / 3$   $2 / 3$

用第二列各元素分别除以 0.35 , 就可得给定 Y = 2 Y=2 Y=2 下, X X X 的条件分布列为
X ∣ Y = 2 X \mid Y=2 XY=2 1 2


   $P$        $6 / 7$   $1 / 7$

用第三列各元素分别除以 0.35 , 就可得给定 Y = 3 Y=3 Y=3 下, X X X 的条件分布列为
X ∣ Y = 3 X \mid Y=3 XY=3 1 2


   $P$        $4 / 7$   $3 / 7$

从这个例子看出, 二维联合分布列只有一个, 而条件分布列有 5 个. 若 X X X
Y Y Y 的取值更多, 则条件分布也更多.
每个条件分布都从一个侧面描述了一种状态下的特定分布.
可见条件分布的内容丰富,其应用也更广.
例 3.5.2 设随机变量 X X X Y Y Y 相互独立, 且
X ∼ P ( λ 1 ) , Y ∼ P ( λ 2 ) X \sim P\left(\lambda_{1}\right), Y \sim P\left(\lambda_{2}\right) XP(λ1),YP(λ2).
在已知 X + Y = n X+Y=n X+Y=n 的条件下, 求 X X X 的条件分布.
解 因为独立泊松变量的和仍为泊松变量, 即
X + Y ∼ P ( λ 1 + λ 2 ) X+Y \sim P\left(\lambda_{1}+\lambda_{2}\right) X+YP(λ1+λ2), 所以
P ( X = k ∣ X + Y = n ) = P ( X = k , X + Y = n ) P ( X + Y = n ) = P ( X = k ) P ( Y = n − k ) P ( X + Y = n ) = λ 1 k k ! e − λ 1 ⋅ λ 2 n − k ( n − k ) ! e − λ 2 ( λ 1 + λ 2 ) n n ! e − ( λ 1 + λ 2 ) = n ! k ! ( n − k ) ! λ 1 k λ 2 n − k ( λ 1 + λ 2 ) n = ( n k ) ( λ 1 λ 1 + λ 2 ) k ( λ 2 λ 1 + λ 2 ) n − k , k = 0 , 1 , ⋯   , n . \begin{aligned} P(X=k \mid X+Y=n) & =\frac{P(X=k, X+Y=n)}{P(X+Y=n)} \\ & =\frac{P(X=k) P(Y=n-k)}{P(X+Y=n)} \\ & =\frac{\frac{\lambda_{1}^{k}}{k !} \mathrm{e}^{-\lambda_{1}} \cdot \frac{\lambda_{2}^{n-k}}{(n-k) !} \mathrm{e}^{-\lambda_{2}}}{\frac{\left(\lambda_{1}+\lambda_{2}\right)^{n}}{n !} \mathrm{e}^{-\left(\lambda_{1}+\lambda_{2}\right)}} \\ & =\frac{n !}{k !(n-k) !} \frac{\lambda_{1}^{k} \lambda_{2}^{n-k}}{\left(\lambda_{1}+\lambda_{2}\right)^{n}} \\ & =\left(\begin{array}{l} n \\ k \end{array}\right)\left(\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}\right)^{k}\left(\frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}}\right)^{n-k}, \quad k=0,1, \cdots, n . \end{aligned} P(X=kX+Y=n)=P(X+Y=n)P(X=k,X+Y=n)=P(X+Y=n)P(X=k)P(Y=nk)=n!(λ1+λ2)ne(λ1+λ2)k!λ1keλ1(nk)!λ2nkeλ2=k!(nk)!n!(λ1+λ2)nλ1kλ2nk=(nk)(λ1+λ2λ1)k(λ1+λ2λ2)nk,k=0,1,,n.
即在 X + Y = n X+Y=n X+Y=n 的条件下, X X X 服从二项分布 b ( n , p ) b(n, p) b(n,p), 其中
p = λ 1 / ( λ 1 + λ 2 ) p=\lambda_{1} /\left(\lambda_{1}+\lambda_{2}\right) p=λ1/(λ1+λ2).
例 3.5.3 设在一段时间内进人某一商店的顾客人数 X X X 服从泊松分布
P ( λ ) P(\lambda) P(λ), 每个顾客购买某种物品的概率为 p p p,
并且各个顾客是否购买该种物品相互独立, 求进人商店的顾客购买这种物品的人数
Y Y Y 的分布列.
解 由题意知
P ( X = m ) = λ m m ! e − λ , m = 0 , 1 , 2 , ⋯   . P(X=m)=\frac{\lambda^{m}}{m !} \mathrm{e}^{-\lambda}, \quad m=0,1,2, \cdots . P(X=m)=m!λmeλ,m=0,1,2,.
在进人商店的人数 X = m X=m X=m 的条件下, 购买某种物品的人数 Y Y Y
的条件分布为二项分布 b ( m , p ) b(m, p) b(m,p), 即
P ( Y = k ∣ X = m ) = ( m k ) p k ( 1 − p ) m − k , k = 0 , 1 , 2 , ⋯   , m . P(Y=k \mid X=m)=\left(\begin{array}{l} m \\ k \end{array}\right) p^{k}(1-p)^{m-k}, \quad k=0,1,2, \cdots, m . P(Y=kX=m)=(mk)pk(1p)mk,k=0,1,2,,m.
由全概率公式有
P ( Y = k ) = ∑ m = k ∞ P ( X = m ) P ( Y = k ∣ X = m ) = ∑ m = k ∞ λ m m ! e − λ ⋅ m ! k ! ( m − k ) ! p k ( 1 − p ) m − k = e − λ ∑ m = k ∞ λ m k ! ( m − k ) ! p k ( 1 − p ) m − k \begin{aligned} P(Y=k) & =\sum_{m=k}^{\infty} P(X=m) P(Y=k \mid X=m) \\ & =\sum_{m=k}^{\infty} \frac{\lambda^{m}}{m !} \mathrm{e}^{-\lambda} \cdot \frac{m !}{k !(m-k) !} p^{k}(1-p)^{m-k} \\ & =\mathrm{e}^{-\lambda} \sum_{m=k}^{\infty} \frac{\lambda^{m}}{k !(m-k) !} p^{k}(1-p)^{m-k} \end{aligned} P(Y=k)=m=kP(X=m)P(Y=kX=m)=m=km!λmeλk!(mk)!m!pk(1p)mk=eλm=kk!(mk)!λm</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值