【概率论】多维随机变量及其分布

本文深入探讨了二维随机变量的概念,包括定义、分布函数及其性质。讲解了二维离散型和连续型随机变量,边缘分布及条件分布的定义、性质和求法。此外,还举例说明了随机变量的相互独立性及其判断标准。
摘要由CSDN通过智能技术生成

二维随机变量

一、二维随机变量的定义

E E E是一个随机变量,它的样本空间是 S = { e } S=\{e\} S={ e},设 X = X ( e ) X=X(e) X=X(e) Y = Y ( e ) Y=Y(e) Y=Y(e)是定义在 S S S上的随机变量,由它们构成一个向量 ( X , Y ) (X,Y) (X,Y)叫做二维随机变量

二、分布函数的定义

( X , Y ) (X,Y) (X,Y)是二维随机变量,对于任意实数 x , y x,y x,y,均存在二元函数 F ( x , y ) = P { ( X ≤ x ) ∩ ( Y ≤ y ) } F(x,y)=P\{(X\leq x)\cap (Y\leq y)\} F(x,y)=P{(Xx)(Yy)}记作 P { X ≤ x , Y ≤ y } P\{X\leq x,Y\leq y\} P{ Xx,Yy},故将 F ( x , y ) F(x,y) F(x,y)称为二维随机变量 ( X , Y ) (X,Y) (X,Y)的分布函数,或称为随机变量 X X X Y Y Y的联合分布函数

三、分布函数的性质

1. 单调不减

任意固定 y y y,当 x 2 > x 1 x_{2}>x_{1} x2>x1时, F ( x 2 , y ) ≥ F ( x 1 , y ) F(x_{2},y)\geq F(x_{1},y) F(x2,y)F(x1,y);任意固定 x x x,当 y 2 > y 1 y_{2}>y_{1} y2>y1时, F ( x , y 2 ) ≥ F ( x , y 1 ) F(x,y_{2})\geq F(x,y_{1}) F(x,y2)F(x,y1)

2. 规范性

0 ≤ F ( x , y ) ≤ 1 0\leq F(x,y)\leq1 0F(x,y)1,且 F ( − ∞ , y ) = F ( x , − ∞ ) = F ( − ∞ , − ∞ ) = 0 , F ( + ∞ , + ∞ ) = 1 F(-\infty,y)=F(x,-\infty)=F(-\infty,-\infty)=0,F(+\infty,+\infty)=1 F(,y)=F(x,)=F(,)=0,F(+,+)=1

3. 右连续

F ( x + 0 , y ) = F ( x , y ) , F ( x , y + 0 ) = F ( x , y ) F(x+0,y)=F(x,y),F(x,y+0)=F(x,y) F(x+0,y)=F(x,y),F(x,y+0)=F(x,y),即函数 F ( x , y ) F(x,y) F(x,y)关于 x , y x,y x,y均右连续

4. 非负性

对于任意的 x 1 < x 2 , y 1 < y 2 x_{1}<x_{2},y_{1}<y_{2} x1<x2,y1<y2,不等式 F ( x 2 , y 2 ) − F ( x 2 , y 1 ) + F ( x 1 , y 1 ) − F ( x 1 , y 2 ) ≥ 0 F(x_{2},y_{2})-F(x_{2},y_{1})+F(x_{1},y_{1})-F(x_{1},y_{2})\geq 0 F(x2,y2)F(x2,y1)+F(x1,y1)F(x1,y2)0成立

推导:
P { X ≤ x 2 , Y ≤ y 2 } − P { X ≤ x 2 , Y ≤ y 1 } + P { X ≤ x 1 , Y ≤ y 1 } − P { X ≤ x 1 , Y ≤ y 2 } = P { X ≤ x 2 , y 1 < Y ≤ y 2 } − P { X ≤ x 2 , y 1 < Y ≤ y 2 } = P { x 1 < X ≤ x 2 , y 1 < Y ≤ y 2 } \begin{aligned}\quad&P\{X\leq x_{2},Y\leq y_{2}\}-P\{X\leq x_{2},Y\leq y_{1}\}+P\{X\leq x_{1},Y\leq y_{1}\}-P\{X\leq x_{1},Y\leq y_{2}\}\\=&P\{X\leq x_{2},y_{1}<Y\leq y_{2}\}-P\{X\leq x_{2},y_{1}<Y\leq y_{2}\}\\=&P\{x_{1}<X\leq x_{2},y_{1}<Y\leq y_{2}\}\end{aligned} ==P{ Xx2,Yy2}P{ Xx2,Yy1}+P{ Xx1,Yy1}P{ Xx1,Yy2}P{ Xx2,y1<Yy2}P{ Xx2,y1<Yy2}P{ x1<Xx2,y1<Yy2}

四、二维离散型随机变量

1. 定义

如果二维随机变量 ( X , Y ) (X,Y) (X,Y)全部可能取到的值是有限对或可列无限多对,则称 ( X , Y ) (X,Y) (X,Y)是离散型的随机变量

2. 性质

  • 非负性: p i j ≥ 0 p_{ij}\geq 0 pij0
  • 规范性: ∑ i = 1 ∞ ∑ j = 1 ∞ p i j = 1 \sum\limits^{\infty}_{i=1}\sum\limits^{\infty}_{j=1}p_{ij}=1 i=1j=1pij=1

3. 联合分布律

P { X = x i , Y = y j } = p i j , i , j = 1 , 2 , ⋯ P\{X=x_{i},Y=y_{j}\}=p_{ij},\quad i,j=1,2,\cdots P{ X=xi,Y=yj}=pij,i,j=1,2,为二维离散型随机变量 ( X , Y ) (X,Y) (X,Y)联合分布律

例1:设随机变量 X X X 1 , 2 , 3 , 4 1,2,3,4 1,2,3,4四个正数中等可能地取一个值,另一个随机变量 Y Y Y 1 1 1 X X X中等可能地取一整数值,试求 ( X , Y ) (X,Y) (X,Y)的分布律

X X X\ Y Y Y 1 1 1 2 2 2 3 3 3 4 4 4
1 1 1 1 4 \frac{1}{4} 41 0 0 0 0 0 0 0 0 0
2 2 2 1 8 \frac{1}{8} 81 1 8 \frac{1}{8} 81 0 0 0 0 0 0
3 3 3 1 12 \frac{1}{12} 121 1 12 \frac{1}{12} 121 1 12 \frac{1}{12} 121 0 0 0
4 4 4 1 16 \frac{1}{16}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值