Elasticsearch(012):es常见的字段映射类型之text(全文本)

es中字符串类型text(全文本)

导语

从本小节开始我们开始学习es中常用的元数据类型和字段映射,学习和理解它们可以有助于理解es及其工作机制。

其主要分为两大类。

其一,元字段,元字段用于ES对每个文档自带的元数据结构,包括 _index_type_id,和_source等等构成。针对这一类,着重讲解它们所代表的意思和一些使用。

其二,就是字段类型(也叫属性),其包括的类型比较多,如下图所示,这部分也是我们开发最常使用的使用,尤其string,数组对象集合等等都是很常用,所以也是我们重点关注的知识点。

在这里插入图片描述

分类

字符串包括text和keyword两种类型

全文本(text)

全文本。通常用于基于文本的相关性搜索。全文本字段可以分词,即在索引执行之前通过一个分词器将字符串转换为单词列表。分词操作使得es可以在全文本字段上搜索单词。全文本字段不用于排序,很少用于聚合等操作

示例代码

#创建索引
PUT example2
#添加映射
PUT example2/docs/_mapping
{
  "properties": {
    "name":{
      "type":"text",
      "analyzer":"ik_max_word",
      "search_analyzer":"ik_smart",
      "index":"true",
      "store":"true"
    },
    "headImg":{
      "type":"text",
      "index":"false",
      "store":"true"
    },
    "descripton":{
      "type":"text",
      "index":"false",
      "store":"false"
    }
  } 
}
#查询映射
GET example2/docs/_mapping

下面我们来解释上面那一段话。

  1. 通过analyzer属性指定分词器。上边指定了name字段的analyzer是指在索引使用ik_max_word,搜索时使用ik_smart对于ik分词器建议是索引时使用ik_max_word将搜索内容进行细粒度分词,搜索时使用ik_smart提高搜索精确性。

  2. 通过index属性指定是否索引。默认为index=true,即要进行索引,只有进行索引才可以从索引库搜索到。但是也有一些内容不需要索引,比如:商品图片地址只被用来展示图片,不进行搜索图片,此时可以将index设置为false。

  3. 通过store属性来决定是否在source之外存储。默认store=false,每个文档索引后会在 ES中保存一份原始文档,存放在"_source"中,一般情况下不需要设置store为true,因为在_source中已经有一份原始文档了。

  4. 通过fields属性,可以对同一个字段进行多种策略的索引。通常为一个字段可以设置一个全文本字段,一个精确的keyword字段类型。示例如下。

    示例

#添加映射
PUT example2/docs/_mapping
{
  "properties": {
    "name":{
      "type":"text",
      "analyzer":"ik_max_word",
      "search_analyzer":"ik_smart",
      "index":"true",
      "store":"true",
       "fields": {
            "noAnalyzerName": {
                "type": "keyword"
            },
            "analyzerName": {
                "type": "text",
                "analyzer":"ik_max_word",
            }
       }
    },
    "headImg":{
      "type":"text",
      "index":"false",
      "store":"true"
    }
  } 
} 

例如上述的name的配置的2种索引的策略。

发布了159 篇原创文章 · 获赞 148 · 访问量 28万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 精致技术 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览