python词嵌入_Keras—embedding嵌入层的用法详解

本文介绍了在Keras中如何使用embedding层进行词嵌入,包括参数设置、预训练词向量的加载以及初始化方法,如Constant和weights参数的使用。通过示例展示了如何为embedding层设置初始值。
摘要由CSDN通过智能技术生成

最近在工作中进行了NLP的内容,使用的还是Keras中embedding的词嵌入来做的。

Keras中embedding层做一下介绍。

参数如下:

其中参数重点有input_dim,output_dim,非必选参数input_length.

初始化方法参数设置后面会单独总结一下。

demo使用预训练(使用百度百科(word2vec)的语料库)参考

embedding使用的demo参考:

def create_embedding(word_index, num_words, word2vec_model):

embedding_matrix = np.zeros((num_words, EMBEDDING_DIM))

for word, i in word_index.items():

try:

embedding_vector = word2vec_model[word]

embedding_matrix[i] = embedding_vector

except:

continue

return embedding_matrix

#word_index:词典(统计词转换为索引)

#num_word:词典长度+1

#word2vec_model:词向量的model

加载词向量model的方法:

def pre_load_embedding_model(model_file):

# model = gensim.models.Word2Vec.load(model_file)

# model = gensim.models.Word2Vec.load(model_file,binary=True)

model = gensim.models.KeyedVectors.load_word2vec_format(model_file)

return model

model中Embedding层的设置(注意参数,Input层的输入,初始化方法):

embedding_matrix = create_embedding(word_index, num_words, word2vec_model)

embedding_layer = Embedding(num_words,

EMBEDDING_DIM,

embeddings_initializer=Constant(embedd

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值