java算法:算法分析事例
假设:有N个银行卡,给定M个交易中任一笔交易是否涉及到该N个银行卡中的任意一张。(针对该运用,N可能很大,M可能巨大。估算目标运行时间。)
例一:顺序查找
Java代码
publicstaticintsequentialSearch(inta[],intv,ints,intr){
inti;
for( i = s; i <= r; i++){
if(v == a[i]){
returni;
}
}
return-1;
}
public static int sequentialSearch(int a[], int v, int s, int r){
int i;
for( i = s; i <= r; i++){
if(v == a[i]){
return i;
}
}
return -1;
}
该方法检查v是否在先前存储的数a[s],a[s+1],...,a[r]中,方法从头开始造,依次与每个数进行比较。顺序查找对每个不成功的查找都要检查N个对象,对于成功查找平均约检查N/2个对象。
例二:折半查找
Java代码
publicstaticintbinarySearch(inta[],intv,ints,intr){
while(r >= s){
intm = (s + r)/2;
if(v == a[m]){
returnm;
}
if(v
r= m -1;
}else{
s = m +1;
}
}
return-1;
}
public static int binarySearch(int a[], int v, int s, int r){
while(r >= s){
int m = (s + r)/2;
if(v == a[m]){
return m;
}
if(v < a[m]){
r= m - 1;
}else{
s = m + 1;
}
}
return -1;
}
折半查找,前提是表中的数据是有序的(如:从小到大)。折半查找要检查的对象个数不会超过floor(lgN) + 1。注:floor()向下取整,ceil()向上取整,round()四舍五入。
当N翻倍的时候,折半查找的运行时间几乎没有变化,但是,顺序查找的运行时间却增加了一倍。显然,随着N的增长,对于巨大的M,顺序查找是不可行的,但是折半查找执行的速度确是不错的。