前言
在介绍其他相机模型之前,可以先看一下kalibr支持标定的相机模型(kalibr可以标定的相机模型),这里的相机模型一共有4种,针孔相机模型,全景相机模型,Double sphere相机模型还有EUCM。其中EUCM已经在前一篇已经介绍过了,下面开始介绍另外几种。
pinhole camera model
该相机模型是最简单的相机模型,在不考虑畸变的情况下,它只有4个参数
,fx和fy为焦距,cx和cy为主点。
相机坐标到图像坐标
其中
表示相机坐标系下的坐标,
为像素坐标。
图像坐标到相机坐标
其中
为归一化坐标。
unified omnidirectional camera model
前一篇EUCM其实是该相机模型的一个扩展,该相机模型有5个参数
,它刚开始是针对于大FOV的鱼眼相机提出的,并且有两个优点:(1)它能精确的模拟各种图像设备和畸变的几何图像生成过程,(2)它的反投影是一个闭式解。
3D点首先被投影到单位球上,之后单位球上的点在以偏离z轴
大小为中心的通过针孔模型进行投影,投影的过程可以通过下图进行表示
投影过程
假设相机坐标系下的点为
,像素坐标为
,那么它的投影过程为
反投影过程
首先通过针孔相机的反投影过程得到
最后得到的反投影坐标为
将其乘以深度就得到了相机坐标系的点。
在鱼眼DSO中,为了补偿透镜缺陷,对原始图像进行了径向切向去畸变,之后才使用该相机模型。所以在这里发现自己对相机模型和畸变模型一直存在混淆,相机模型应该是投影方式的不同,而去畸变是为了矫正相机透镜缺陷带来的问题,两者其实是独立的。
总结
在说明double sphere模型之前还需要理解其他的模型,这些留到下次写吧。
参考资料
[1] Hidenobu M , Lukas V S , Vladyslav U , et al. Omnidirectional DSO: Direct Sparse Odometry with Fisheye Cameras[J]. IEEE Robotics & Automation Letters, 2018, PP:1-1.