鱼眼相机标定_鱼眼相机模型(二)

本文介绍了鱼眼相机的pinhole camera model和unified omnidirectional camera model,阐述了相机坐标到图像坐标的转换及反投影过程,并讨论了相机模型与畸变校正的区别。总结了鱼眼相机标定的基础知识,为理解更复杂的相机模型奠定基础。
摘要由CSDN通过智能技术生成

前言

在介绍其他相机模型之前,可以先看一下kalibr支持标定的相机模型(kalibr可以标定的相机模型),这里的相机模型一共有4种,针孔相机模型,全景相机模型,Double sphere相机模型还有EUCM。其中EUCM已经在前一篇已经介绍过了,下面开始介绍另外几种。

pinhole camera model

该相机模型是最简单的相机模型,在不考虑畸变的情况下,它只有4个参数

,fx和fy为焦距,cx和cy为主点。

相机坐标到图像坐标

其中

表示相机坐标系下的坐标,
为像素坐标。

图像坐标到相机坐标

其中

为归一化坐标。

unified omnidirectional camera model

前一篇EUCM其实是该相机模型的一个扩展,该相机模型有5个参数

,它刚开始是针对于大FOV的鱼眼相机提出的,并且有两个优点:(1)它能精确的模拟各种图像设备和畸变的几何图像生成过程,(2)它的反投影是一个闭式解。

3D点首先被投影到单位球上,之后单位球上的点在以偏离z轴

大小为中心的通过针孔模型进行投影,投影的过程可以通过下图进行表示

fcc4cfb2750d0a9f6fdea13332344f3d.png
unified投影过程[1]

投影过程

假设相机坐标系下的点为

,像素坐标为
,那么它的投影过程为

反投影过程

首先通过针孔相机的反投影过程得到

最后得到的反投影坐标为

将其乘以深度就得到了相机坐标系的点。

在鱼眼DSO中,为了补偿透镜缺陷,对原始图像进行了径向切向去畸变,之后才使用该相机模型。所以在这里发现自己对相机模型和畸变模型一直存在混淆,相机模型应该是投影方式的不同,而去畸变是为了矫正相机透镜缺陷带来的问题,两者其实是独立的。

总结

在说明double sphere模型之前还需要理解其他的模型,这些留到下次写吧。

参考资料

[1] Hidenobu M , Lukas V S , Vladyslav U , et al. Omnidirectional DSO: Direct Sparse Odometry with Fisheye Cameras[J]. IEEE Robotics & Automation Letters, 2018, PP:1-1.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值