写在前面:这是自己的学习笔记。
通过将对象序列化可以将其存储在变量或者文件中,可以保存当时对象的状态,实现其生命周期的延长。并且需要时可以再次将这个对象读取出来。
用于序列化的两个package:
1.json:用于字符串和Python数据类型间进行转换
2.pickle: 用于python特有的类型和python的数据类型间进行转换
json提供四个功能:dumps,dump,loads,load
pickle提供四个功能:dumps,dump,loads,load
pickle模块
pickle可以存储什么类型的数据呢?所有python支持的原生类型:布尔值,整数,浮点数,复数,字符串,字节,None。
由任何原生类型组成的列表,元组,字典和集合。
函数,类,类的实例
dumps将dict转化为str格式,loads将str格式转化为dict格式。
dump和load与文件操作结合起来,
1. pickle.dump(obj, file, protocol=None,)
必填参数obj表示将要封装的对象
必填参数file表示obj要写入的文件对象,file必须以二进制可写模式打开,即“wb”
如:
with open('D:/recall.pkl', 'wb') as f:
pickle.dump(rec, f, pickle.HIGHEST_PROTOCOL)
2. pickle.load(file,*,fix_imports=True, encoding="ASCII", errors="strict")
必填参数file必须以二进制可读模式打开,即“rb”,其他都为可选参数
with open('D:/tmp.pkl', 'rb') as f:
data = pickle.load(f)
3. pickle.dumps(obj):以字节对象形式返回封装的对象,不需要写入文件中
import pickle
data = ['aa', 'bb', 'cc']
# dumps 将数据通过特殊的形式转换为只有python语言认识的字符串
p_str = pickle.dumps(data)
print(p_str)
b'\x80\x03]q\x00(X\x02\x00\x00\x00aaq\x01X\x02\x00\x00\x00bbq\x02X\x02\x00\x00\x00ccq\x03e.
4. pickle.loads(bytes_object): 从字节对象中读取被封装的对象,并返回
# loads功能
# loads 将pickle数据转换为python的数据结构
mes = pickle.loads(p_str)
print(mes)
['aa', 'bb', 'cc']
json模块
其dumps、dump、loads和load功能与pickle的一样