mie散射理论方程_Mie氏散射理论的实验研究

Mie氏散射理论的实验研究

2018-8-31 09:51

众所周知,Mie氏散射理论主要用于从亚微米至微米的尺寸段,在微米以下至纳米的光散射则近似为形式更明晰简单的瑞利散射定律,而对大于微米至毫米的大粒子则近似为意义明确的夫琅和费衍射规律。用这些定律可成功解释各类散射现象,并指导颗粒的粒度分布的测试技术,Mie氏散射理论是对处于均匀介质中的各向均匀同性的单个介质球在单色平行光照射下的Maxwell方程边界条件的严格数学解,它是目前颗粒测试中的主流理论。

下面我们在分析国内外颗粒散射理论和测试技术基础上设计了一套采用光子技术测量亚微米量级颗粒散射信息的实验系统来对Mie氏散射理论进行更加深入的研究。为了将亚微米乃至纳米范围内的颗粒更加精确地测量其粒径大小,实验中采用光子技术,合理地设计样品池与入射光之间的角度,很好地提高了实验精度,得到与Mie 理论吻合较好的结果,并创新提出采用光纤探头结合光电倍增管与光子计数器作探测器的粒度仪,较有限环靶更好地适用于亚微米颗粒的粒度测试,并可更好的和计算机接口,提高测试水平,从而大大提高了小颗粒粒度测量的分辨能力,并在此基础上探测性地研究新一代亚微米颗粒检测仪器。

该研究采用高时空分辨率观测技术,以物理模拟结合实验测量为主要研究手段。采用He-Ne激光光源照射到均匀分散的颗粒上,用光纤接受散射信号,通过光电倍增管将散射信号放大后,用光子计数器来测量激光作用下各微粒的散射信息。通过对散射信号的分析计算,可得到所测场中颗粒物理参数的定量结果。

本实验采用的光路示意图如下:

图1  Mie散射实验光路图

如图1所示,

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
马蒂厄函数理论基础及应用 作者:熊天信 著 出版时间:2014年版 内容简介   在椭圆柱坐标系中,由波动方程得到角向马蒂厄方程和径向马蒂厄方程,然后讨论角向马蒂厄方程和径向马蒂厄方程的解,即角向马蒂厄函数和径向马蒂厄函数,根据马蒂厄函数的性质,对马蒂厄函数进行分类,规范了角向马蒂厄函数和径向马蒂厄函数的函数符号。给出了马蒂厄函数用三角函数和贝塞尔函数级数展开的各种形式,进而得到它们的一阶导数的表达式,另外还对马蒂厄函数的积分形式进行讨论。讨论了马蒂厄函数的数值计算方法,编写出所有马蒂厄函数及其一阶导数的Fortran数值计算程序,通过数值计算,绘制出了一些典型的马蒂厄函数及其一阶导数的函数图像。最后,给出马蒂厄函数的一些典型应用示例。 目录 第1章 马蒂厄方程 1.1 正交曲线坐标系 1.1.1 正交曲线坐标系的定义和坐标系之间的变换关系 1.1.2 正交曲线坐标系中标量函数的梯度 1.1.3 正交曲线坐标系中矢量函数的散度 1.1.4 正交曲线坐标系中矢量函数的旋度 1.2 马蒂厄方程 1.2.1 椭圆柱坐标系 1.2.2 角向马蒂厄方程与径向马蒂厄方程 第2章 角向马蒂厄函数 2.1 角向马蒂厄方程的解 2.1.1 解的一般性质——基本解 2.1.2 弗洛凯解 2.1.3 角向马蒂厄方程的周期解 2.2 整数阶角向马蒂厄函数 2.2.1 q=0时角向马蒂厄方程的解 2.2.2 q)O时角向马蒂厄方程的解——整数阶角向马蒂厄函数 2.3 马蒂厄函数的数值计算 2.3.1 概述 2.3.2 角向马蒂厄函数傅里叶级数展开系数的递推关系 2.3.3 角向马蒂厄方程的特征值的计算 2.3.4 特征值am和bm的特征曲线 2.4 角向整数阶马蒂厄函数的正交归一化关系 2.5 角向马蒂厄函数图像 2.6 角向马蒂厄函数数表 2.7 角向马蒂厄方程的非周期解 2.7.1 周期解与非周期解的关系 2.7.2 非周期角向马蒂厄函数的定义 2.7.3 非周期角向马蒂厄函数的归一化 2.8 负参数角向马蒂厄函数 2.8.1 负参数角向马蒂厄方程的周期解 2.8.2 负参数非周期角向马蒂厄函数 2.9 分数阶角向马蒂厄函数 2.10 马蒂厄方程的稳定解与非稳定解 第3章 径向马蒂厄函数 3.1 径向马蒂厄函数的分类概述 3.2 第一类径向马蒂厄函数 3.2.1 函数Jem(ξ,q)和Jom(ξ,q)的形式 3.2.2 非周期径向马蒂厄函数F%(ξ,q)和G‰(ξ,q) 3.2.3 函数Jem(ξ,q)和Jom(ξ,q)的导数 3.2.4 函数Jem(ξ,q)和Jom(ξ,q)及其导数曲线 3.2.5 第一类径向马蒂厄函数及其导数数表 3.3 第二类径向马蒂厄函数 3.3.1 函数Nem(ξ,q)和Nom(ξ,q)的形式 3.3.2 函数Nem(ξ,q)和Nom(ξ,q)的导数 3.3.3 函数Nem(ξ,q)和Nom(ξ,q)及其导数曲线 3.3.4 第二类径向马蒂厄函数及其导数数表 3.4 第一类变形贝塞尔型径向马蒂厄函数 3.4.1 函数Iem(ξ,-q)和Iom(ξ,-q)的形式 3.4.2 函数Iem(ξ,q)和Iom(ξ,q)的导数 3.4.3 函数Iem(ξ,q)和Iom(ξ,q)曲线 3.5 第二类变形贝塞尔型径向马蒂厄函数 3.5.1 函数Kem(ξ,-q)和Kom(ξ,-q)的形式 3.5.2 函数Kem(ξ,q)和Kom(ξ,q)的导数 3.5.3 径向马蒂厄函数之间的恒等关系 3.5.4 函数Kem(ξ,q)和Kom(ξ,q)曲线 3.6 马蒂厄一汉克尔函数 3.7 用贝塞尔函数级数展开的角向马蒂厄函数 3.8 马蒂厄函数的收敛性 3.9 径向马蒂厄函数的渐近式 3.9.1 贝塞尔函数型的径向马蒂厄函数的渐近式. 3.9.2 变形贝塞尔函数型的径向马蒂厄函数的渐近式 第4章 马蒂厄函数的积分表示及其相互关系 4.1 角向马蒂厄函数的核 4.2 角向马蒂厄函数的贝塞尔函数级数展开 4.3 角向马蒂厄函数的积分关系 4.4 径向马蒂厄函数的积分关系 4.4.1 贝塞尔型径向马蒂厄函数的积分关系 4.4.2 变形贝塞尔型径向马蒂厄函数的积分关系 4.5 用贝塞尔函数和三角函数表示的核 4.6 用贝塞尔函数乘积展开的马蒂厄函数 4.7 马蒂厄函数乘积的积分表示和级数展开 4.8 用马蒂厄函数的级数展开其他函数 第5章 马蒂厄函数的应用 5.1 椭圆形薄膜振动 5.2 四极杆质量分析器的基本原理 5.2.1 四极杆质量分析器中马蒂厄方程的推导 5.2.2 离子运动轨迹与稳定性图 5.3 椭圆波导 5.3.1 椭圆波导中的电磁场 5.3.2 椭圆波导中的本征模 5.3.3 椭圆波导的截止波长和截止频率 5.4 椭圆谐振腔 5.4.1

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值