动态规划问题

一. 从一个例子入门

题目:在下面的数字三角形中寻找一条从顶部到底边的路径,使得路径上所经过的数字之和最大。路径上的每一步都只能往左下或右下走。只需要求出这个最大和即可,不必给出具体路径。 三角形的行数大于1小于等于100,数字为 0~99。(此题目来源于北大POJ)

  输入格式:

    5      //表示三角形的行数    接下来输入三角形

    7

    3   8

    8   1   0

    2   7   4   4

    4   5   2   6   5

   1、第一次解题:递归解法

首先,肯定得用二维数组来存放数字三角形

然后我们用D( r, j) 来表示第r行第 j 个数字(r,j从1开始算)

我们用MaxSum(r, j)表示从D(r,j)到底边的各条路径中,最佳路径的数字之和。

因此,此题的最终问题就变成了求 MaxSum(1,1)

当我们看到这个题目的时候,首先想到的就是可以用简单的递归来解题:

D(r, j)出发,下一步只能走D(r+1,j)或者D(r+1, j+1)。故对于N行的三角形,我们可以写出如下的递归式:   

if ( r == N)                
	MaxSum(r,j) = D(r,j)  
else      
	MaxSum( r, j) = Max{ MaxSum(r+1,j), MaxSum(r+1,j+1) } + D(r,j) 

根据上面这个简单的递归式,我们就可以很轻松地写出完整的递归代码:

#include <iostream>  
#include <algorithm> 
#define MAX 101  
using namespace std; 
int D[MAX][MAX];  
int n;  
int MaxSum(int i, int j){    
	if(i==n)  
		return D[i][j];    
	int x = MaxSum(i+1,j);    
	int y = MaxSum(i+1,j+1);    
	return max(x,y)+D[i][j];  
}
int main(){    
	int i,j;    
	cin >> n;    
	for(i=1;i<=n;i++)   
		for(j=1;j<=i;j++)        
			cin >> D[i][j];    
	cout << MaxSum(1,1) << endl;  
}      

对于如上这段递归的代码,当提交到POJ时,会显示如下结果:

    

对的,代码运行超时了,为什么会超时呢?

答案很简单,因为我们重复计算了,当我们在进行递归时,计算机帮我们计算的过程如下图:

就拿第三行数字1来说,当我们计算从第2行的数字3开始的MaxSum时会计算出从1开始的MaxSum,当我们计算从第二行的数字8开始的MaxSum的时候又会计算一次从1开始的MaxSum,也就是说有重复计算。这样就浪费了大量的时间。也就是说如果采用递规的方法,深度遍历每条路径,存在大量重复计算。则时间复杂度为 2的n次方,对于 n = 100 行,肯定超时。 

2、第二次解题:递归解法改进

接下来,我们就要考虑如何进行改进,我们自然而然就可以想到如果每算出一个MaxSum(r,j)就保存起来,下次用到其值的时候直接取用,则可免去重复计算。那么可以用n方的时间复杂度完成计算。因为三角形的数字总数是 n(n+1)/2

根据这个思路,我们就可以将上面的代码进行改进,使之成为记忆递归型的动态规划程序: 

#include <iostream>  
#include <algorithm> 
using namespace std;
 
#define MAX 101
  
int D[MAX][MAX];    
int n;  
int maxSum[MAX][MAX];
 
int MaxSum(int i, int j){      
	if( maxSum[i][j] != -1 )         
		return maxSum[i][j];      
	if(i==n)   
		maxSum[i][j] = D[i][j];     
	else{    
		int x = MaxSum(i+1,j);       
		int y = MaxSum(i+1,j+1);       
		maxSum[i][j] = max(x,y)+ D[i][j];     
	}     
	return maxSum[i][j]; 
} 
int main(){    
	int i,j;    
	cin >> n;    
	for(i=1;i<=n;i++)   
		for(j=1;j<=i;j++) {       
			cin >> D[i][j];       
			maxSum[i][j] = -1;   
		}    
	cout << MaxSum(1,1) << endl; 
} 

当我们提交如上代码时,结果就是一次AC:

  
 

3、第三次解题:递推解法

虽然在短时间内就AC了。但是,我们并不能满足于这样的代码,因为递归总是需要使用大量堆栈上的空间,很容易造成栈溢出,我们现在就要考虑如何把递归转换为递推,让我们一步一步来完成这个过程。

我们首先需要计算的是最后一行,因此可以把最后一行直接写出,如下图:

    

现在开始分析倒数第二行的每一个数,现分析数字2,2可以和最后一行4相加,也可以和最后一行的5相加,但是很显然和5相加要更大一点,结果为7,我们此时就可以将7保存起来,然后分析数字7,7可以和最后一行的5相加,也可以和最后一行的2相加,很显然和5相加更大,结果为12,因此我们将12保存起来。以此类推。。我们可以得到下面这张图:

    

    然后按同样的道理分析倒数第三行和倒数第四行,最后分析第一行,我们可以依次得到如下结果:

    

    

    上面的推导过程相信大家不难理解,理解之后我们就可以写出如下的递推型动态规划程序: 

#include <iostream>  
#include <algorithm> 
using namespace std; 
 
#define MAX 101  
 
int D[MAX][MAX];   
int n;  
int maxSum[MAX][MAX]; 
int main(){    
	int i,j;    
	cin >> n;    
	for(i=1;i<=n;i++)   
		for(j=1;j<=i;j++)        
			cin >> D[i][j];   
	for( int i = 1;i <= n; ++ i )     
		maxSum[n][i] = D[n][i];   
	for( int i = n-1; i>= 1;  --i )     
		for( int j = 1; j <= i; ++j )         
			maxSum[i][j] = max(maxSum[i+1][j],maxSum[i+1][j+1]) + D[i][j];    
	cout << maxSum[1][1] << endl;  
} 

 

二. 什么是动态规划

下面就可以来总结一下什么是动态规划了:

动态规划即Dynamic Programming,简称DP。从本质上来看动态规划问题,最核心的思想就是将一个大的问题拆分成一个一个的子问题,通过定义问题与子问题之间的状态转移关系从而使得问题可以递推的解决下去。(绝大部分递归的问题都可以用动态规划的方式来解决,而且可以大大减小时间复杂度和空间复杂度)

动态规划问题是面试题中的热门话题,如果要求一个问题的最优解(通常是最大值或者最小值),而且该问题能够分解成若干个子问题,并且小问题之间也存在重叠的子问题,则考虑采用动态规划。

可使用动态规划求解的题目特征: 
①求一个问题的最优解 
②大问题可以分解为子问题,子问题还有重叠的更小的子问题 
③整体问题最优解取决于子问题的最优解(状态转移方程) 
④从上往下分析问题,从下往上解决问题 
⑤讨论底层的边界问题

1. 将原问题分解为子问题

  • 把原问题分解为若干个子问题,子问题和原问题形式相同或类似,只不过规模变小了。子问题都解决,原问题即解决(数字三角形例)。
  • 子问题的解一旦求出就会被保存,所以每个子问题只需求解一次。

2. 确定状态

  • 在用动态规划解题时,我们往往将和子问题相关的各个变量的一组取值,称之为一个“状态”。一个“状态”对应于一个或多个子问题, 所谓某个“状态”下的“值”,就是这个“状 态”所对应的子问题的解。
  • 所有“状态”的集合,构成问题的“状态空间”。“状态空间”的大小,与用动态规划解决问题的时间复杂度直接相关。 在数字三角形的例子里,一共有N×(N+1)/2个数字,所以这个问题的状态空间里一共就有N×(N+1)/2个状态。
  • 整个问题的时间复杂度是状态数目乘以计算每个状态所需时间。在数字三角形里每个“状态”只需要经过一次,且在每个状态上作计算所花的时间都是和N无关的常数。

3. 确定一些初始状态(边界状态)的值

  • 以“数字三角形”为例,初始状态就是底边数字,值就是底边数字值。

4. 确定状态转移方程

定义出什么是“状态”,以及在该“状态”下的“值”后,就要找出不同的状态之间如何迁移――即如何从一个或多个“值”已知的 “状态”,求出另一个“状态”的“值”(递推型)。状态的迁移可以用递推公式表示,此递推公式也可被称作“状态转移方程”。

数字三角形的状态转移方程:

    

 

下面会再收集一些可用动态规划来求解的题目,加强练习  

 

三. 硬币找零问题

1. 问题描述

给定一组硬币数,找出一组最少的硬币数,来找换零钱N。

比如,可用来找零的硬币为: 1、3、4   待找的钱数为 6。用两个面值为3的硬币找零,最少硬币数为2。而不是 4,1,1

2. 动态规划求解分析

  • 考虑该问题的最优子结构:设 c[j,i]表示 可用第 0,1,.... j 枚硬币 对 金额为 i 的钱 进行找钱 所需要的最少硬币数。
    j表示可用的硬币种类数, i表示需要找回的零钱
    第 j 枚硬币有两种选择:用它来找零 和 不用它找零。因此,c[j,i]的最优解如下:
    c[j,i]= min{c[j-1,i] , c[j, i-coinsValues[j]] + 1}   其中,
    c[j-1,i] 表示 不使用第 j 枚硬币找零时,对金额为 i 进行找钱所需要的最少硬币数
    c[j, i-coinsValues[j]] + 1 表示 使用 第 j 枚硬币找零时,对金额为 i 进行找钱所需要的最少硬币数。由于用了第 j 枚硬币,故使用的硬币数量要增1
    c[j,i] 取二者的较小值的那一个。
  • 由上面的分析可知,其实就是从1块钱开始找零,找到i块钱。并每次把最小找零数目存储起来,方便后面调用。

3. 代码(参考文章:最少硬币找零问题-动态规划

#include<iostream>
using namespace std;
//money需要找零的钱
//coin可用的硬币
//n硬币种类
void FindMin(int money, int *coin, int n)
{
	int *coinNum = new int[money + 1]();//存储从1块钱开始,到money每个值找零最少需要的硬币的个数
	int *coinValue = new int[money + 1]();//最后加入的硬币,方便后面输出是哪几个硬币
	coinNum[0] = 0;

	for (int i = 1; i <= money; i++)
	{
		int minNum = i;//i面值钱,需要最少硬币个数
		int usedMoney = 0;//这次找零,在原来的基础上需要的硬币
		for (int j = 0; j<n; j++)
		{
			if (i >= coin[j])//找零的钱大于这个硬币的面值,才需要进入下一步判断
			{
				//if(coinNum[i-coin[j]]+1<=minNum)//所需硬币个数减少了
				/*
				上面的判断语句有问题,在更新时,需要判断i-coin[j]是否能找的开,如果找不开,就不需要更新。
				多谢zywscq 指正
				*/
				if (coinNum[i - coin[j]] + 1 <= minNum && (i == coin[j] || coinValue[i - coin[j]] != 0))//所需硬币个数减少了
				{
					minNum = coinNum[i - coin[j]] + 1;//更新
					usedMoney = coin[j];//更新
				}
			}
		}
		coinNum[i] = minNum;
		coinValue[i] = usedMoney;
	}

	//输出结果
	if (coinValue[money] == 0)
		cout << "找不开零钱" << endl;
	else
	{
		cout << "需要最少硬币个数为:" << coinNum[money] << endl;
		cout << "硬币分别为:";
		while (money>0)
		{
			cout << coinValue[money] << ",";
			money -= coinValue[money];
		}
	}
	delete[]coinNum;
	delete[]coinValue;
}
int main()
{
	int Money = 54;
	int coin[] = { 1,2,5,9,10 };
	FindMin(Money, coin, 5);
	getchar();
	return 0;
}

 

 

 

参考文章:

教你彻底学会动态规划——入门篇

《面试--动态规划》 ---五种经典的算法问题

常见的动态规划问题分析与求解

常见动态规划问题总结

 

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值