python中rename函数_Python Pandas Dataframe.rename()用法及代码示例

Python是进行数据分析的一种出色语言,主要是因为以数据为中心的python软件包具有奇妙的生态系统。 Pandas是其中的一种,使导入和分析数据更加容易。

Pandas rename()方法用于重命名任何索引,列或行。列的重命名也可以通过dataframe.columns = [#list]。但在上述情况下,自由度不高。即使必须更改一列,也必须传递完整的列列表。另外,上述方法不适用于索引标签。

用法: DataFrame.rename(mapper=None, index=None, columns=None, axis=None, copy=True, inplace=False, level=None)

参数:

映射器,索引和列:字典值,键表示旧名称,值表示新名称。这些参数只能一次使用。

axis:int或字符串值,“ 0”表示行,“ 1”表示列。

copy:如果为True,则复制基础数据。

inplace:如果为True,则在原始 DataFrame 中进行更改。

level:用于在数据帧具有多个级别索引的情况下指定级别。

返回类型:具有新名称的 DataFrame

要下载代码中使用的CSV,请点击此处。

范例1:更改索引标签

在此示例中,名称列设置为索引列,稍后使用rename()方法更改其名称。

# importing pandas module

import pandas as pd

# making data frame from csv file

data = pd.read_csv("nba.csv", index_col ="Name" )

# changing index cols with rename()

data.rename(index = {"Avery Bradley":"NEW NAME",

"Jae Crowder":"NEW NAME 2"},

inplace = True)

# display

data

输出:

如输出图像中所示,第一和第二位置的索引标签的名称已更改为NEW NAME&NEW NAME 2。

9b2f3fab6597c170992d6dc6c4de6a8b.jpg

范例2:更改多个列名

在此示例中,通过传递字典来更改多个列名。之后,将结果与使用.columns方法返回的数据帧进行比较。由于NaN == NaN将返回false,因此在比较之前将空值删除。

# importing pandas module

import pandas as pd

# making data frame from csv file

data = pd.read_csv("nba.csv", index_col ="Name" )

# changing cols with rename()

new_data = data.rename(columns = {"Team":"Team Name",

"College":"Education",

"Salary":"Income"})

# changing columns using .columns()

data.columns = ['Team Name', 'Number', 'Position', 'Age',

'Height', 'Weight', 'Education', 'Income']

# dropna used to ignore na values

print(new_data.dropna()== data.dropna())

输出:

如输出图像所示,由于所有值均为True,因此使用这两种方法的结果相同。

4a421fe405f72ba84445f5282eefb3f3.jpg

  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
©️2021 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值