python可以构建sem模型_Python Pandas Series.sem()用法及代码示例

Pandas Series的sem()函数用于计算轴上的平均值的无偏标准误差。示例展示了如何在包含和不包含缺失值的情况下使用该函数。
摘要由CSDN通过智能技术生成

Pandas 系列是带有轴标签的一维ndarray。标签不必是唯一的,但必须是可哈希的类型。该对象同时支持基于整数和基于标签的索引,并提供了许多方法来执行涉及索引的操作。

Pandas Series.sem()函数返回所请求轴上的平均值的无偏标准误差。默认情况下,结果由N-1归一化。可以使用ddof参数进行更改。

用法: Series.sem(axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs)

参数:

axis:{索引(0)}

skipna:排除NA /空值。

level:如果轴是MultiIndex(分层),则沿特定级别计数,并折叠成标量。

ddof:Delta自由度。

numeric_only:仅包括float,int,boolean列。

返回:标量或系列(如果指定级别)

范例1:采用Series.sem()函数来查找给定Series对象中基础数据的平均值的标准误差。

# importing pandas as pd

import pandas as pd

# Creating the Series

sr = pd.Series([100, 25, 32, 118, 24, 65])

# Print the series

print(sr)

输出:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值