Pandas 系列是带有轴标签的一维ndarray。标签不必是唯一的,但必须是可哈希的类型。该对象同时支持基于整数和基于标签的索引,并提供了许多方法来执行涉及索引的操作。
Pandas Series.sem()函数返回所请求轴上的平均值的无偏标准误差。默认情况下,结果由N-1归一化。可以使用ddof参数进行更改。
用法: Series.sem(axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs)
参数:
axis:{索引(0)}
skipna:排除NA /空值。
level:如果轴是MultiIndex(分层),则沿特定级别计数,并折叠成标量。
ddof:Delta自由度。
numeric_only:仅包括float,int,boolean列。
返回:标量或系列(如果指定级别)
范例1:采用Series.sem()函数来查找给定Series对象中基础数据的平均值的标准误差。
# importing pandas as pd
import pandas as pd
# Creating the Series
sr = pd.Series([100, 25, 32, 118, 24, 65])
# Print the series
print(sr)
输出: