这篇文章主要介绍了如何确定CFA和SEM等模型所需要的样本量。
尽管确定合适的样本量是SEM中的一个关键问题,但遗憾的是,文献中没有就SEM的适当样本大小达成共识。有证据表明即使样本量很小,简单的SEM模型也可以进行有意义的测试(Hoyle,1999; Hoyle和Kenny,1999; Marsh和Hau,1999),但通常,N = 100-150被认为是最小样本量用于进行SEM(Tinsley和Tinsley,1987; Anderson和Gerbing,1988; Ding,Velicer和Harlow,1995; Tabachnick和Fidell,2001)。一些研究人员认为SEM需要更大的样本量,例如,N = 200(Hoogland和Boomsma 1998; Boomsma和Hoogland,2001; Kline,2005)。模拟研究表明,对于正态分布的指标变量且没有缺失数据,简单CFA模型的合理样本大小约为N = 150(Muthén和Muthén,2002)。对于多组建模,经验法则是每组至少100个样本比较合适(Kline,2005)。
通常根据观察到的变量的数量来考虑样本大小。对于正态分布数据,Bentler和Chou(1987)建议,当潜在变量有多个指标时,每个变量低至5个案例的比例就足够了。一个广泛接受的经验法则是每个指标变量10个案例/观察变量,以此作为样本量的下限(Nunnally,1967)。
通常关注在用于确定样本大小的模型中估计的案例/观察(N)的(N:q)与自由参数(q)的数量的比率。较高的N:q比是优选的。经验法则是模型中每个自由参数至少5个案例/观察值(即N:q 5