1 问题描述
高密度环境下的行人统计一直没有得到很好的解决,主要原因是对高密度人群中的行人检测和跟踪是一个很难的问题,如下图所示环境,存在的困难包括:
检测方面:
由于人群整体处于运动状态,占据了背景的60%以上的面积,导致许多目标检测的方法,如基于背景差的运动目标检测、分割方法难以奏效。另外,由于人群存在大量遮挡,导致基于行人轮廓的检测方法,如HOG也难以奏效。
跟踪方面:
高密度环境中的多目标跟踪,由于存在大量的遮挡、合并、分离,实现准确的跟踪是一个富有挑战性的研究问题。
本实验的目的是对高密度行进人群中的行人流量进行统计,并能够区分上行和下行。实验的基本思路是:
在一个行人头部大小的带状区域中进行头部检测(HaarLike Adaboost方法),然后利用一个滑动的跟踪门对检测的头部结果进行关联,同时利用运动历史图分析的方法估计行人轮廓的运动方向,最后对序列关联特征进行分析给出上下行的统计结果。
下面分三个部分:头部检测、方向分析、关联统计,对算法进行描述。
2 头部检测
如图所示复杂环境下,能够较好的在高密度人群中区分行人的特征只有头部。当摄像机架设一定高度时,行人头部遮挡较少,对检测和跟踪较有利。
头部检测优势在于:头部具有结构化的一些特征,相对于肤色、发色而言,受光线、噪声、阴影等影响较小。不足在于:头部的特征变化多样,不同的装束、肤色、方向都会有较大的差别。
我们采用了较为成熟的基于HaarLike特征的Adaboost分类器算法,对头部进行检测。
《AdaBoost头部分类器训练实验报告》一文中对算法基本原理,分类器样本的选择、处理和分类器的训练、测试进行了详细的描述,在这里不再赘述。只对实验中分类器的具体应用方法进行描述:
Step1: 分类器设置:载入分类器,实验中使用的分类器的原始尺寸为10*10。在检测过程中通过逐级放大分类器实现不同尺寸头部检测(检测头部尺寸范围为10*10-28*28)。
Step2:图像预处理:根据实际情况缩放图像(双线性差值)至合适大小,使图像中行人头部尺寸介于检测范围内(10*10-28*28)。并在图像中设置一高度为30(可以容纳1个头部高度),宽度为图像宽度的检测区域,将图像转换为灰度图像,此后所有操作均在此范围内进行,这样大大提高了检测算法的速度。如下图所示: