动态规划DP——矩阵连乘的最小计算量

本文分析了矩阵连乘问题,通过动态规划寻找最小计算量的矩阵乘法顺序。算法设计采用自底向上的策略,通过源代码实现并测试,展示不同加括号方式对计算量的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.问题分析

给定n个矩阵{A1,A2,A3,……,An},其中,Ai和Ai+1(i=1,2,3,……,n-1)是可乘的。矩阵乘法如图所示:

用加括号的方法表示矩阵连乘的次序,不同的计算次序计算量是不同的,找出一种加括号的方法,使得矩阵连乘的计算量最小。

例如:

A1是M(5×10)的矩阵

A2是M(10×100)的矩阵

A3是M(100×2)的矩阵

那么有两种加括号的方法:

  1. (A1A2)A3
  2. A1(A2A3) 

第一种加括号方法的计算量:5×10×100+5×100×2=6000。
第二种加括号方法的计算量: 10×100×2+5×10×2=2100。

可以看出,不同加括号的方法,矩阵乘法的运算次数可能有巨大的差别!!!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值