1.问题分析
给定n个矩阵{A1,A2,A3,……,An},其中,Ai和Ai+1(i=1,2,3,……,n-1)是可乘的。矩阵乘法如图所示:
用加括号的方法表示矩阵连乘的次序,不同的计算次序计算量是不同的,找出一种加括号的方法,使得矩阵连乘的计算量最小。
例如:
A1是M(5×10)的矩阵
A2是M(10×100)的矩阵
A3是M(100×2)的矩阵
那么有两种加括号的方法:
- (A1A2)A3
- A1(A2A3)
第一种加括号方法的计算量:5×10×100+5×100×2=6000。
第二种加括号方法的计算量: 10×100×2+5×10×2=2100。可以看出,不同加括号的方法,矩阵乘法的运算次数可能有巨大的差别!!!