pandas官方文档_使用Pandas绘图

这里,以六家互联网公司2019年的股价来作为例子学习pandas的绘图。

导入包

f9a7acd09436a67b2a7655a17a1b73ba.png

首先,导入pandas与pandas_datareader两个包,其中,pandas_datareader是可以查询各公司股价的包。

获取股票数据

这里先以阿里巴巴为例:

7d44f05ac8df254b635d5461c0d1f11c.png

通过get_data_yahoo可从雅虎获得阿里巴巴2019年每天股价的DataFrame。

通过http://Df.info()以及Df.describe()可以查询该DataFrame中是否存在异常值或者缺失值。

可以使用Df.plot()绘制股价的变化曲线,横坐标默认为DataFrame的索引,可通过

x=''

改变横坐标,

同时可通过参数kind,改变绘图的类型。

关于pandas.DataFrame.plot(),它的所有参数及设置可见官方操作文档:

pandas.DataFrame.plot - pandas 1.0.1 documentation​pandas.pydata.org

导入另外五家公司的数据

db35c25b428467cf8ecc02fb0b4a8b41.png

在ln[20]和ln[21]中,可以通过指定画纸的方式在同一张图中绘制几家公司的曲线。

柱状图&箱形图&股价变化

8f4fc7697f1218b41347d4441d2a737d.png

在绘制不同类型的数据时,可以选择绘制不同的图表类型来更直观的表达出数据中隐藏的信息。

pandas官方文档是一个针对pandas库的详细指南,它提供了关于如何使用pandas库进行数据分析和处理的全面教程。 在pandas官方文档中,我们可以找到有关如何安装pandas库的说明,以及如何开始使用该库的简单示例。 文档中的主要部分包括: 1. 数据结构:介绍pandas库中的两种主要数据结构,即Series和DataFrame。它们是在数据分析中使用最频繁的数据结构,并提供了许多操作和功能来处理和操作数据。 2. 数据导入和导出:解释了如何将数据从不同的源(如CSV文件、Excel文件、SQL数据库等)导入到pandas中,并将处理过的数据导出到不同的格式中。 3. 数据操作和处理:介绍了在pandas中进行数据操作和处理的各种方法,包括数据的选择、过滤、排序、分组、合并等。 4. 数据分析和可视化:探讨了如何使用pandas进行数据分析和可视化的各种技术。它包括统计计算、数据聚合和绘图等。 5. 时间序列:介绍了如何使用pandas处理时间序列数据,并展示了在时间序列分析中常用的功能和方法。 除此之外,官方文档还提供了大量的示例代码和练习,以帮助读者更好地理解和掌握pandas库的使用。 总的来说,pandas官方文档是一个非常重要且有价值的资源,它能够帮助使用者全面了解和学习pandas库,从而更有效地进行数据分析和处理。无论是初学者还是有经验的数据分析师,都可以从官方文档中获益,并在实际工作中更好地应用pandas库。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值