这里,以六家互联网公司2019年的股价来作为例子学习pandas的绘图。
导入包

首先,导入pandas与pandas_datareader两个包,其中,pandas_datareader是可以查询各公司股价的包。
获取股票数据
这里先以阿里巴巴为例:

通过get_data_yahoo可从雅虎获得阿里巴巴2019年每天股价的DataFrame。
通过http://Df.info()以及Df.describe()可以查询该DataFrame中是否存在异常值或者缺失值。
可以使用Df.plot()绘制股价的变化曲线,横坐标默认为DataFrame的索引,可通过
x=''
改变横坐标,
同时可通过参数kind,改变绘图的类型。
关于pandas.DataFrame.plot(),它的所有参数及设置可见官方操作文档:
pandas.DataFrame.plot - pandas 1.0.1 documentationpandas.pydata.org导入另外五家公司的数据

在ln[20]和ln[21]中,可以通过指定画纸的方式在同一张图中绘制几家公司的曲线。
柱状图&箱形图&股价变化

在绘制不同类型的数据时,可以选择绘制不同的图表类型来更直观的表达出数据中隐藏的信息。