不连续曲线 highcharts_皮亚诺曲线和维度不变

3127eebca9bc609563bb1595725b00e0.png

在我的回答

丘成桐国际数学夏令营(高中)是怎么样的一种模式?​www.zhihu.com

里,我说要把我做的几个小问题放到知乎上来。所以我就放到这里来吧(虽然在知乎上它们可能不算难..

以及,这篇文章全片画风都是分析,这主要是因为我代数没怎么学会:D


33d03b25059df033cda4e3ac39ead809.png
题目

对于每个题目,我都会重申题目大意,并且给出我和组员的大致解决过程。


4.1.

题目大意:考虑
上的三进小数,也就是

我们定义

. 现在,对于
我们定义
,其中

证明:

是良定义的连续满射.

证明:

先证明良定义

如果

的三进表示是唯一的,那么结果必然只有一个,这是显然的.

如果

的三进表示不唯一,那么我们先找出不能唯一表示的
:

假设

. 也就是说,


取最小的
,因此

不失一般性地,假设

,于是

因此,当且仅当

时等号成立. 也就是说,

我们现在证明这两个

的表达形式会统一到一个
上去.

(i).

(a).

是偶数

相等.

(b).

是奇数

相等.

(c).

是奇数

相等.

(d).

是偶数

相等.

(ii).

,类似

因此,

是良定义的.

其次,证明连续性

证明. 规定一些记号:

对于任意

,令

开始计算:

连续性得证.

最后,证明满射

这个映射

是定义在这两个等式上的:

由于

,因此
,因此我们有

通过一些计算,我们得到

我们给出一个猜测:对于任意

中的某个数码,
一定能被
表示. 这个猜测等价于一下两个命题:
是对于
中的奇数
可以被
表示;
是对于
中的偶数
可以被
表示. 我们用归纳法证明它们.

(i).

,因此

(ii).假设

真,那么
可以被表示,那么
可以被表示,

(iii).假设

真,那么
可以被表示,那么
可以被表示,

因此

皆真,得证

4.2.

题目大意:(dimension invariance theorem). 假设
是非空的开集(通常拓扑),证明不存在
之间的同胚,除非
.

大致思路:用Brouwer Fixed Point Theorem证明Domain Invariance Theorem,然后证明Dimension Invariance Theorem. 由于一个开集可以写成有限多个或者无限多个胞腔的并,这里胞腔指的是和开球同胚的集合. 所以我们只需要证明:闭球的内部经过同胚变换依然是同胚像的内部. 不失一般性地,我们考虑这个球的球心,令作原点,因此Domain Invariance变成了:

命题一:如果

是连续单射,那么

这里,

是一个n维闭球.

因为

是紧的,
也是紧的. 考虑连续映射
(连续性显然),那么我们就可以延拓这个映射到
,有一个零点是
. 这个G的零点是稳定的,也就是推动G一点仍然在
里有零点. 也就是

命题二:

,满足
,那么这个
中的零点.

根据这个命题,我们可以假设命题一成立而构造一个

里是没有零点的,以此导出矛盾. 另外,从Domain Invariance到Dimension Invariance是容易的.

Brouwer Fixed Point Theorem的证明

引理:不存在连续光滑的retraction
引理的证明:
假设存在. 令

由于r是光滑的,
上的n-1形式,令
是个inclusion map,于是
也就是说,
就是
,因此,根据Stokes定理(虽然我不会证,但不会有循环论证的问题)

矛盾

现在,我们假设

上的
没有不动点,也就是

根据Stone-Weierstrass Theorem,我们可以找到一个

上的光滑的
去逼近
,也就是

因此,

它也没有不动点

并能计算出

使得
,因此r是一个smooth retraction,以及对于任意
上的
都有
,这是违背之前的lemma的.

命题二的证明:

,于是
,根据Brouwer Fixed Point Theorem,F是有不动点的,也就是
的零点.

命题一的证明:

假设这个命题是假的. 令

很小,根据
的连续性,我们有当
足够小的时候,当
时,
. 另外,既然
不是
的内点,就一定存在
,
是在
外面的. 不失一般性地,令
,于是我们有
,以及
.

假设一个集合

,其中

(看不懂可以画张图帮助理解)

于是,K是紧的但不包含f(0). 定义一个映射

显而易见的是,它是良定义的、连续的.

为了防止这里的G长得太恶心,我们用Weierstrass Approximation Theorem给它来一个多项式近似:对于任意

可以找到一个多项式使得

P在K上没有零点.

这时就可以构造矛盾了. 我们考虑一个

这是一个连续的没有零点的函数. 因此我们有

又由于

时,
,我们有

综上,我们有

所以我们只需要

就成功构造了一个矛盾:这是违反命题2的,这就表明了命题1的正确性.

维度不变性的证明:

都到这了,事情就变得trivial了起来

的时候我们定义一个continuous injection from
to
,这样写:

假设有一个连续单射:

,那么
是一个
的连续单射,根据Domain Invariance,我们有
是开的,然而对于
的任意点
,不存在开球包含
,因为坐标后面有一串0. 因此,
中的唯一开集就是
,意味着
,这是不行的. 因此,
,同样的,
,于是

这是一个很分析的证明,思路基本来自于陶哲轩的博客 Brouwer’s fixed point and invariance of domain theorems, and Hilbert’s fifth problem
当然,这个定理有其他的证明. 比如张筑生的微分拓扑新讲里给出了用Jordan-Brouwer分离定理的证明,这个定理的二维形式是非常著名的Jordan曲线定理. 或者用代数拓扑的语言能很快的证明,比如topological invariance of dimension in nLab 给出的. 还可以用单形,比如 http:// personal.colby.edu/pers onal/s/sataylor/teaching/S09/MA331/InvarianceOfDomain.pdf 给出的.

0159dad54e0c46878f4444c6038b1591.png
代数拓扑

9b4caaf4c2c9f2397fc0608bc687046c.png

2e52dd65b067396669795d0a83811872.png
《微分拓扑新讲》

4.3.

题目大意:peano曲线是不是给出了Dimension Invariance的反例呢?为什么?

当然没有. 事实上,我们可以不用刚才那一大套东西证明线和面之间没有连续双射.

首先,证明不存在连续双射

假设存在,那我们挖掉一个点,

也是连续双射,然而左边是连通的,右边是不联通的,矛盾,因此不存在.

现在证明连续双射

是不存在的

如果存在,我们证明

是连续双射. 如果在
不连续,那么

以及
使得
(这个是因为
的有界性和Bolzano Weierstrass Theorem),于是

因为

,
,我们有
,这是违反双射的. 因此
必然是连续的双射,而之前我们证明了
上没有连续双射,因此
是不存在的.

但是,我们之前给出了

似乎Peano曲线是个双射啊..?

这显然是不对的. 因为这个映射不是良定义的.

考虑

于是
是不一样的,这就是个很好的对于Peano曲线不是单射的说明.

一些其他的东西

其实,我们可以构造

的连续满射,如下

考虑三进小数

假设我们的曲线是

,并且记
,于是

和之前一样,可以验证它的满射性、良定性、连续性,以及不是单射.


注:图是Brouwer的照片

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值