皮亚诺曲线距离

本文探讨了皮亚诺曲线的性质,特别是在不同阶数下的行走路径。通过将高阶曲线转化为低阶曲线,可以计算两个点沿皮亚诺曲线的距离。给定阶数k和两个点的坐标,可以通过逐层降阶的方法确定它们之间的距离。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

皮亚诺曲线距离

题目描述
皮亚诺曲线是一条平面内的曲线。
下图给出了皮亚诺曲线的 1 阶情形,它是从左下角出发,经过一个 3 × 3 的方格中的每一个格子,最终到达右上角的一条曲线。
在这里插入图片描述

下图给出了皮亚诺曲线的 2 阶情形,它是经过一个 3^2 × 3^2 的方格中的每一个格子的一条曲线。它是将 2 阶曲线的每个方格由 1 阶曲线替换而成。
在这里插入图片描述

下图给出了皮亚诺曲线的 3 阶情形,它是经过一个 3^3 × 3^3 的方格中的每一个格子的一条曲线。它是将 3 阶曲线的每个方格由 2 阶曲线替换而成。

在这里插入图片描述

皮亚诺曲线总是从左下角开始出发,最终到达右上角。
我们将这些格子放到坐标系中,对于 k 阶皮亚诺曲线,左下角的坐标是(0, 0),右上角坐标是 (3^k − 1, 3^k − 1),右下角坐标是 (3^k − 1, 0),左上角坐标是(0, 3^k − 1)。

给定 k 阶皮亚诺曲线上的两个点的坐标,请问这两个点之间,如果沿着皮亚诺曲线走,距离是多少?

输入描述
输入的第一行包含一个正整数 k,皮亚诺曲线的阶数。

第二行包含两个整数 x1,y1,表示第一个点的坐标。

第三行包含两个整数 x2,y2,表示第二个点的坐标。

其中有 ,0 ≤ k ≤ 100, 0 ≤ x1, y1, x2, y2 < 3^k, x1, y1, x2, y2 ≤ 10^18 。数据保证答案不超过 10^18。

输出描述
输出一个整数,表示给定的两个点之间的距离。

输入输出样例
示例
输入

1
0 0
2 2

输出

8
运行限制
最大运行时间:1s
思路:将每一个n阶的图都看成一阶的,也就是说把每个n阶的图看成9个n-1阶的图,就转化成了一阶跟二阶的关系,根据二阶的和一阶的x,y之间的关系来逐层降阶

#include"iostream"
using namespace std;
long long n;
long long cheng(long long a,long long n)
{
   
	long long ans=1;
	while(n)
	{
   
		if(n%2==1){
   
			ans*=a;
			n--;
		}
		a*=a;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

红和黑

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值