表面肌电信号(简称sEMG),本质是一簇运动单元所形成的局部电场总和,载有人的运动信息。通过解码sEMG来识别人的特征行为,进而赋予机器理解人运动意图的能力,是【人机交互】研究中的重要领域[1]。通常将电极贴在目标肌肉位置来记录在运动时肌肉周围的sEMG信号。
sEMG的信号的特点:
- 一维时间序列
- 幅值和肌肉的激活程度成正比
- 比目标肌肉运动提前30-150ms
- 幅度在10mV以内
- 能量主要集中在0-500Hz
对sEMG信号的处理包括:【预处理】和【特征提取】两个部分。
【预处理】是通过50Hz工频滤波和带通滤波,以获得有用频段信号。
【特征提取】算法包括【时域法】和【频域法】。
【时域法】本质上是提取信号幅值的变化规律。 例如:均方根RMS反应“肌肉激活强弱水平”物理特性。提取方法通常为滑动窗口法:
其余时域特征提取算法包括:Willision幅值WA、阈值穿过次数TC、斜率变化次数SSC、自回归模型ARC等,数学形式都很好理解。
【频域法】顾名思义是分析信号的频率特性,方法包括:均值/中值频率、小波变换、功率谱密度。
【均值/中值频率】是利用一元函数的中值定理(参看高等数学I),确定敏感频率的位置。
【小波变换】可以把信