matlab肌电信号去噪程序_表面肌电信号在人机协作中的应用 (1)

本文介绍了表面肌电信号(sEMG)在人机交互中的应用,讨论了sEMG信号特点,包括其预处理(50Hz工频滤波和带通滤波)和特征提取(时域法和频域法)步骤。时域特征如RMS、WA、TC、SSC和ARC,以及频域特征如中值频率、小波变换和功率谱密度被用于分析。文章提供了一个简单的肱二头肌sEMG信号处理实例,并提出特征提取的挑战和考虑因素。
摘要由CSDN通过智能技术生成

表面肌电信号(简称sEMG),本质是一簇运动单元所形成的局部电场总和,载有人的运动信息。通过解码sEMG来识别人的特征行为,进而赋予机器理解人运动意图的能力,是【人机交互】研究中的重要领域[1]。通常将电极贴在目标肌肉位置来记录在运动时肌肉周围的sEMG信号。

sEMG的信号的特点

  • 一维时间序列
  • 幅值和肌肉的激活程度成正比
  • 比目标肌肉运动提前30-150ms
  • 幅度在10mV以内
  • 能量主要集中在0-500Hz

对sEMG信号的处理包括:【预处理】和【特征提取】两个部分。

【预处理】是通过50Hz工频滤波和带通滤波,以获得有用频段信号。

【特征提取】算法包括【时域法】和【频域法】。

【时域法】本质上是提取信号幅值的变化规律。 例如:均方根RMS反应“肌肉激活强弱水平”物理特性。提取方法通常为滑动窗口法

87bc8967b2ae5558d50c28346238f6eb.png

其余时域特征提取算法包括:Willision幅值WA、阈值穿过次数TC、斜率变化次数SSC、自回归模型ARC等,数学形式都很好理解。

【频域法】顾名思义是分析信号的频率特性,方法包括:均值/中值频率、小波变换、功率谱密度。

【均值/中值频率】是利用一元函数的中值定理(参看高等数学I),确定敏感频率的位置。

【小波变换】可以把信

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值