文章目录
卷积神经网络意义
案例演示
数据准备
卷积层、池化层
全连接层
计算损失值
初始化optimizer
指定迭代次数,并在session执行graph
完整代码如下
卷积神经网络意义
对于MNIST数据集来说,采用逻辑回归对数据进行辨别似乎已经达到极限,无法通过细枝末节的修补对其准确度做出更进一步的提高,因此本章开始放弃原有模型而采用全新的卷积神经网络对数据进行处理。对于任意一个卷积网络来说,几个必不可少的部分为:
- 输入层:用以对数据进行输入
- 卷积层:使用给定的核函数对输入的数据进行特征提取,并根据核函数的数据产生若干个卷积特征结果
- 池化层:用以对数据进行降维,减少数据的特征
- 全连接层:对