卷积神经网络图像识别python代码_Python深度学习-初识卷积神经网络_1

本文介绍了卷积神经网络在图像识别中的重要性,通过一个案例演示了如何使用Python进行CNN建模。主要内容包括数据准备、卷积层与池化层的构建、全连接层的应用,以及损失值计算、optimizer初始化和训练过程。通过实例展示了CNN对MNIST数据集的处理,以提升图像识别的准确性。
摘要由CSDN通过智能技术生成
9d818f573a3eb4fb621b352168d6ce31.png

文章目录

卷积神经网络意义

案例演示

数据准备

卷积层、池化层

全连接层

计算损失值

初始化optimizer

指定迭代次数,并在session执行graph

完整代码如下

卷积神经网络意义

对于MNIST数据集来说,采用逻辑回归对数据进行辨别似乎已经达到极限,无法通过细枝末节的修补对其准确度做出更进一步的提高,因此本章开始放弃原有模型而采用全新的卷积神经网络对数据进行处理。对于任意一个卷积网络来说,几个必不可少的部分为:

  1. 输入层:用以对数据进行输入
  2. 卷积层:使用给定的核函数对输入的数据进行特征提取,并根据核函数的数据产生若干个卷积特征结果
  3. 池化层:用以对数据进行降维,减少数据的特征
  4. 全连接层:对
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值