向量到一个平面的投影向量

向量到一个平面的投影向量

求一个向量投影到一个平面上的投影向量,如下图
在这里插入图片描述

已知项: 向量 sq,平面法向量 n
设点 o 为点 q 到平面的垂点
则向量 oq 垂直于平面
则向量 so 即为 sq 在平面上的投影。
so = sq + qo
so = sq + n*(sq·n* -1)

在上面的推理中对于 qo 的一步步转换是这样的
因为qo 平行于 n,且 n 是单位向量
|qo| = |sq·n|
sq 朝向平面正面时 sq·n >= 0,qon 方向相反
sq 朝向平面负面时 sq·n <= 0, qon 方向相同
所以 qo = n*(sq·n *-1)

### 回答1: 设平面方程为Ax + By + Cz + D = 0,点为P(x0, y0, z0)。点P在平面上的投影为点P',要求出P'的坐标。可以通过以下步骤求解: 1. 求出平面的法向量N = (A, B, C)。 2. 求出点P到平面的距离d,公式为: d = |Ax0 + By0 + Cz0 + D| / sqrt(A^2 + B^2 + C^2) 3. 求出点P'到点P的向量V = N * (d / |N|),其中|N|为N的模长。 4. 点P'的坐标为P' = P - V。 ### 回答2: 求一个点在一个平面上的投影,可以通过以下步骤进行: 1. 确定平面和点的坐标:首先需要知道平面的方程以及点的坐标。平面的方程可以表示为Ax + By + Cz + D = 0,其中A、B、C和D是常数,点的坐标可以表示为(x0, y0, z0)。 2. 计算平面的法向量:使用平面的方程可以得到平面的法向量,例如(A, B, C)就是平面的法向量。 3. 计算点到平面的距离:使用点到平面距离的公式,即点到平面的垂直距离。距离公式可以表示为d = |Ax0 + By0 + Cz0 + D| / sqrt(A^2 + B^2 + C^2)。 4. 计算点的投影坐标:通过平面的法向量和点到平面的距离,可以计算点在平面上的投影坐标。投影坐标可以表示为(x_proj, y_proj, z_proj) = (x0 - Ad, y0 - Bd, z0 - Cd)。 所以,我们可以通过以上的步骤求得一个点在一个平面上的投影。 ### 回答3: 求一个点在一个平面上的投影,可以通过以下步骤来进行: 1. 首先确定平面的方程。如果已知平面一个点P0和法向量n,可以使用点法式或两点式来确定平面方程。 2. 计算从平面上的任意一点P到待求投影点P'的连线向量V。这里的P是待求点,也就是需要求投影的点。 3. 根据向量V和平面向量n的关系,使用内积来计算投影向量V'。由于V'为在平面上的投影,它在平面的法向量方向上的分量为0。因此,投影向量V'可以通过公式V' = V - (V · n) * n来计算。 4. 将投影向量V'与平面上的任意一点P0相加,即可得到待求点的投影点P'。 通过以上步骤,我们就可以求得一个点在一个平面上的投影。需要注意的是,如果使用的是二维平面投影,步骤稍有不同,但基本思路是一样的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值