决策树 随机森林 xgboost_决策树和随机森林

1. 直观理解决策树

决策树模型是一种树形结构,由一系列节点组成,每一个节点代表一个特征和相应的决策规则。是基于特征对实例进行分类或回归的过程,即根据某个特征把数据分划分到若干个子区域(子树),再对子区域递归划分,直到满足某个条件则停止划分并作为叶子节点,不满足条件则继续递归划分。

2c08d7dc074f2c5eb77a4156cf5942c2.png
直观理解

如图一个简单的决策树分类模型:

  • 根节点:最顶层的节点,也是最重要的节点。如图中“是否去健身房”
  • 叶子节点:代表标签类别。如图中“看”和“不看”
  • 中间节点:中间分类条件。如图中“健身完后去游泳”,“是否有好看的电影”
  • 分枝:代表每一个条件的输出
  • 二叉树:每一个节点上有两个分枝
  • 多叉树:每一个节点上至少有两个分枝

a8d5cb78ce823205fd0283cf6f10cb48.png
一个简单的决策树分类模型

2. 这棵树是怎么生成的

上面图中我们为啥要用“是否去健身房”做根节点呢?可不可以用“是否有好看的电影”做根节点呢?这样做有什么原因吗?要回答这些问题,我们首先要理解决策树的思想是什么。决策树实际上就是寻找最纯净的划分方法,这个“最纯净”在数学上叫纯度,纯度通俗点理解就是决策结果要分得足够开(y=1的和y=0的混到一起就会不纯),尽可能让类别一样的数据在树的同一边,当树的叶子节点的数据都是同一类的时候,则停止分类。

那么如何衡量纯度呢?举个例子吧

箱子1:100个红球

箱子2:50个红球 50个黑球

箱子3:10个红球 30个蓝球 60绿球

箱子4:各个颜色均10个球

80c10484da6f0b2b0ba7c6ca30343c00.png

凭人的直觉感受,箱子1是最纯粹的,箱子4是最混乱的,如何把人的直觉感受进行量化呢?

将这种纯粹度用数据进行量化,计算机才能读懂 。纯度的另一面也即不纯度,热力学里面有个“熵”的概念正好就是衡量信息混乱程度的。

2.1 信息熵

信息熵是衡量信息的不确定性或混乱程度的指标,信息的不确定性越大,熵越大。定义如下:

其中:

为随机变量
取值为
的概率,
代表种类,每一个类别中,
代表某个种类的概率乘以当前种类的概率
,然后将各个类别计算结果累加。

举个例子:

我们把抛硬币这个事件看作一个随机变量

,可能的取值有2种,分别是正面1和反面0。每一种取值的概率为

ea65e7c09a72d428e1120402ec81ffce.png

信息熵:

5e031dc83d76b210ac1bc1081dc63abb.png

信息熵:

2.2 条件熵

条件熵类似于条件概率,在知道X的情况下,Y的不确定性,定义如下:

2.3 信息增益

信息增益代表熵的变化程度,也就是某个特征

使得类
的不确定性减少的程度:

信息增益越大,熵的变化程度越大,分的越干脆,越彻底,不确定性越小。

在构建决策树的时候就是选择信息增益最大的属性作为分裂条件(ID3),使得在每个非叶子节点上进行测试时,都能获得最大的类别分类增益,使分类后数据集的熵最小,这样的处理方法使得树的平均深度较小,从而有效提高了分类效率。

3. 如何构建决策树

根节点以及树节点是从最重要到次重要依次排序的,ID3算法用的是信息增益,C4.5算法用信息增益率;CART算法使用基尼系数。决策树方法是会把每个特征都试一遍,然后选取那个能够使分类分的最好的特征,也就是说将A属性作为父节点,产生的纯度增益(GainA)要大于B属性作为父节点,则A作为优先选取的属性。

三种方法对比:

ID3算法:信息增益越大,则选取该分裂规则,多分叉树。信息增益可以理解为,有了x以后对于标签p的不确定性的减少,减少的越多越好,即信息增益越大越好。倾向于选择水平数量较多的变量,可能导致训练得到一个庞大且深度浅的树;另外输入变量必须是分类变量(连续变量必须离散化);最后无法处理空值。

C4.5选择了信息增益率替代信息增益作为分裂准则。此方法避免了ID3算法中的归纳偏置问题,因为ID3算法会偏向于选择类别较多的属性(形成分支较多会导致信息增益大)。多分叉树。连续属性的分裂只能二分裂,离散属性的分裂可以多分裂,比较分裂前后信息增益率,选取信息增益率最大的。

CART以基尼系数替代熵;最小化不纯度而不是最大化信息增益。既可以用于分类也可以用于回归。CART用Gini系数最小化准则来进行特征选择,生成二叉树。

4. 如何避免过拟合

如果决策树考虑了所有的训练数据集,得到的决策树将会过于庞大。虽然这个决策树对于训练数据集的拟合概率为100%,但是由于过分考虑所有的数据,将数据切得太碎太碎了,这样就会使得决策树学习到一些噪音点、错误点,出现过拟合的现象。

两种方法可以避免过拟合:剪枝和随机森林。

4.1 剪枝

剪枝分为预剪枝和后剪枝。

  • 预剪枝:在构建决策树的过程中,提前停止。如限制深度、限制当前集合的样本个数的最低阈值。对比未剪枝的决策树和经过预剪枝的决策树可以看出:预剪枝使得决策树的很多分支都没有“展开”,这不仅降低了过拟合的风险,还显著减少了决策树的训练时间开销和测试时间开销。但是,另一方面,因为预剪枝是基于“贪心”的,所以,虽然当前划分不能提升泛化性能,但是基于该划分的后续划分却有可能导致性能提升,因此预剪枝决策树有可能带来欠拟合的风险。
  • 后剪枝:先把整颗决策树构造完毕,然后自底向上的对非叶结点进行考察,若将该结点对应的子树换为叶结点能够带来泛化性能的提升,则把该子树替换为叶结点。对比预剪枝和后剪枝,能够发现,后剪枝决策树通常比预剪枝决策树保留了更多的分支,一般情形下,后剪枝决策树的欠拟合风险小,泛化性能往往也要优于预剪枝决策树。但后剪枝过程是在构建完全决策树之后进行的,并且要自底向上的对树中的所有非叶结点进行逐一考察,因此其训练时间开销要比未剪枝决策树和预剪枝决策树都大得多。

4.2 随机森林

随机森林就是通过集成学习的思想将多棵决策树集成的一种算法,它的基本单元是决策树,本质是一种集成学习(Ensemble Learning)方法。

从直观角度来解释,每棵决策树都是一个分类器,那么对于一个输入样本,N棵树会有N个分类结果。而随机森林集成了所有的分类投票结果,将投票次数最多的类别指定为最终的输出,这就是一种最简单的 Bagging 思想。

随机森林体现了两方面的随机

  • 样本随机 :不使用全部数据集,而是随机有放回采样(有一定概率避免选到异常点,使得树的效果更好)
  • 特征随机 :不使用全部特征,而是随机选取一部分特征(有一定概率避开使用传统信息增益出问题的特征)

随机森林中的每棵树是怎么生成的呢?

  1. 如果训练集大小为N,对于每棵树而言,随机且有放回地从训练集中的抽取N个训练样本,作为该树的训练集;

从这里我们可以知道:每棵树的训练集都是不同的,而且里面包含重复的训练样本(理解这点很重要)。

问题1:为什么要随机抽样训练集?

如果不进行随机抽样,每棵树的训练集都一样,那么最终训练出的树分类结果也是完全一样的,这样的话完全没有bagging的必要;

问题2:为什么要有放回地抽样?

如果不是有放回的抽样,那么每棵树的训练样本都是不同的,都是没有交集的,这样每棵树都是"有偏的",都是绝对"片面的"(当然这样说可能不对),也就是说每棵树训练出来都是有很大的差异的;而随机森林最后分类取决于多棵树(弱分类器)的投票表决,这种表决应该是"求同",因此使用完全不同的训练集来训练每棵树这样对最终分类结果是没有帮助的,这样无异于是"盲人摸象"。

2. 如果每个样本的特征维度为M,指定一个常数m<<M,随机地从M个特征中选取m个特征子集,每次树进行分裂时,从这m个特征中选择最优的;

3. 每棵树都尽最大程度的生长,并且没有剪枝过程。

一开始我们提到的随机森林中的“随机”就是指的这里的两个随机性。两个随机性的引入对随机森林的分类性能至关重要。由于它们的引入,使得随机森林不容易陷入过拟合,并且具有很好得抗噪能力(比如:对缺省值不敏感)。

随机森林分类效果(错误率)与两个因素有关:

  • 森林中任意两棵树的相关性:相关性越大,错误率越大;
  • 森林中每棵树的分类能力:每棵树的分类能力越强,整个森林的错误率越低。

减小特征选择个数m,树的相关性和分类能力也会相应的降低;增大m,两者也会随之增大。所以关键问题是如何选择最优的m(或者是范围),这也是随机森林唯一的一个参数。

5. 案例解析

使用决策树预测糖尿病¶

数据源: https://www.kaggle.com/uciml/pima-indians-diabetes-database#diabetes.csv

注意: 需要使用如下命令安装额外两个包用于画图

conda install python-graphviz

conda install pydotplus

声明:本案例来自贪心学院机器学习特训营的作业

# 导入数据包

2e7eb97f492e4c2386ff982738cecedc.png
# 选择预测所需的特征

Accuracy: 0.7489177489177489

#可视化训练好的决策树模型

c355af040b0b4d9ffd38afae6a361310.png
# 创建新的决策树, 限定树的最大深度, 减少过拟合

Accuracy: 0.7878787878787878

#可视化新的决策树

746771f02f9d38cd2c459f7eca49d3f7.png
#使用随机森林做预测

Accuracy: 0.6536796536796536

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值