简述决策树,随机森林和XGBOOST之间的关系

本文主要讲解:决策树,随机森林和xgboost,附带讲解AdaBoost和GBDT

1.决策树

这些算法都依赖于决策树或者决策树的各种魔改版,所以决策树是一定要掌握清楚的。决策树是一种常见的机器学习算法,决策树的目的是构造一种模型,使之能够从样本数据的特征属性中,通过学习简单的决策规则——IF THEN规则,从而预测目标变量的值。以西瓜的例子来说,给定类似色泽,根蒂以及敲声等特征,怎么判断一个西瓜是不是好西瓜。 

西瓜问题的一颗决策树

 通过一系列的判定,最终得到【色泽=青绿, 根蒂=蜷缩,敲声=浊响】的西瓜是好瓜。

一般来说,一棵决策树包含一个根节点,若干个内部节点和若干个叶节点。其中,叶节点对应与决策结果,其他每个节点则对应一个属性测试。这里最重要的是如何选择最优属性进行划分?为什么色泽是第一个属性而不是根蒂呢?这里引出了各种划分选择。

1.1 信息增益(ID3算法)

目前的决策树算法主要有:ID3, ID4.5和CART。在ID3中,按照信息增益作为准则来选取划分属性。我们希望决策树的分支节点包含的样本尽可能属于同一类别,即结点的‘纯度’越来越高。

‘信息熵’是度量样本集合纯度最常用的一种指标。

假定当前样本集合D中第k类样本所占比例为p_{k}(k = 1, 2, ..... |y|),D的信息熵定义为:

Ent(D) = -\sum_{k=1}^{|y|}p_{k} * log_{2}^{p_{k}}

其中,|y|为D的样本类别总类。如西瓜例子中标签为好瓜和坏瓜,则|y| = 2

信息熵是一个节点的固有性质,对于确定的数据集来说,这是一个定值

在定义了信息熵之后,对信息增益进行定义,假设选取属性a有V个取值(即能被分成v份),{ (a^{1}, a^{2}, ....a^{v} )}。按照决策树的规则,D将被划分为V个不同的节点数据集。考虑到不同节点包含样本数不同,给分支赋予相对于的权重,即样本越多的分支权重越大。于是,我们可以算出用属性a对样本集D进行划分得到的‘信息增益’:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值