EfficientNet网络及Pytorch实现

EfficientNet是由GoogleBrain在2019年提出的,它通过复合系数来统一调整深度、宽度和分辨率,为卷积神经网络提供更均衡的缩放方式。这种方法避免了传统缩放方法的随意性,并利用神经结构搜索找到最佳的网络参数。论文中介绍的MBConvBlock是其核心组件,其pytorch实现也得到了广泛应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2019年由Google Brain提出,论文地址:EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks

论文提出了一种新的模型缩放方法,它使用一个简单而高效的复合系数来从depth, width, resolution 三个维度放大网络,不会像传统的方法那样任意缩放网络的维度,基于神经结构搜索技术可以获得最优的一组参数(复合系数)。
在这里插入图片描述

图43 Compound Scaling

在这里插入图片描述

图44 EfficientNet 网络结构

其中MBConv Block如下图所示

在这里插入图片描述

图45 MBConv Block

pytorch实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值