关于SSD实现流程的理解-- sample及prior_box

本文详述了SSD(Single Shot MultiBox Detector)的实现流程,包括数据增强步骤,如图像扭曲、扩张、随机裁剪以及数据变换。接着分析了网络结构,特别是MobileNet-SSD的修改。重点讲解了prior_box的选择及其在推理过程中的作用,以及正负样本的确定策略。
摘要由CSDN通过智能技术生成

使用的代码的github链接:https://github.com/chuanqi305/MobileNet-SSD.git

在用mobilenet-ssd训练模型的过程中,对SSD的实现流程产生了困惑,通过参考代码及网上各种博客,梳理如下:

1)SSD的data augmentation和sampler    

2)网络结构模型

3)prior_box的选取及infer的过程

 

备注:对于train.prototxt中设置的各种参数含义不理解可以参看caffe.proto文件,里面都有解释。

SSD代码在caffe.proto中新增了部分参数:

 

1、SSD的数据增广操作

数据经过Annotated data layer层后,图像和图像中的目标框被提取出来并保存。

之后,数据要经过一系列的变换,依次为:

(1) Image distortion;

(2) Image expansion;

(3) Sampling a random crop window;

(4) Data transform: Adding noise, resizing,

(1)主要是图像的各种参数调整,这里的参数最好使用推荐值

操作对象是原始图片的副本,并非原始图片

(2)Image expansion

这一步的作用主要在于放大原始图像,prob指概率,max_expand_ratio可以理解为放大成原图像的几倍。这里是以一种嵌入的方式实现放大,在原始图像周围填充像素值实现放大。 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值