应一些网友的邀请,对量化框架backtrader做一个翻译,翻译中会根据理解去掉一些无关紧要的话术,并根据自己理解加一些观点,感兴趣的朋友可以关注公号[数据指导投资]获得文档翻译地址。
1.介绍
backtrader的2个目标
- 使用简单
- 参考1
backtrader的运行流程
- 制定策略
1.1 确定潜在的可调参数
1.2 实例化您在策略中需要的指标
1.3 写下进入/退出市场的逻辑 - 创建Cerebro引擎(西班牙语大脑的意思)
2.1 注入策略
2.2 使用cerebro.adddata加载回测数据
2.3 执行cerebro.run
2.4 使用cerebro.plot绘制可视化图表
backtrader是高度可配置的,希望大家发现其中的乐趣。
2.安装
除了绘图以外,backtrader不需要任何外部依赖包
版本要求
基本要求是:
Python 2.7
Python 3.2 / 3.3 / 3.4 / 3.5
如有绘图需求,则要求 Matplotlib> = 1.4.1
兼容性
backtrader兼容Python2.x/3.x。
backtrader同时在Python2.7和Python3.4下进行过开发和测试。并在Travis下通过持续集成来检查与3.2/3.3/3.5的兼容性测试。
从pypi安装
pip install backtrader
# 如果希望绘图功能,请使用[plotting]选项,这将会安装matplotlib和相关依赖包。
pip install backtrader[plotting]
从源码安装
首先从github网站下载一个版本或最新的压缩包:https://github.com/mementum/backtrader
解压并将源代码拷贝到项目目录
命令如下:
tar xzf backgrader.tgz
cd backtrader
cp -r backtrader project_directory
python setup.py install
如有绘图需求,请手动安装matplotlib。
文档最新更新地址可在公号<数据指导投资>中回复[文档]获得。