opencl官方中文文档_量化交易框架backtrader官方文档中文翻译之简介

应一些网友的邀请,对量化框架backtrader做一个翻译,翻译中会根据理解去掉一些无关紧要的话术,并根据自己理解加一些观点,感兴趣的朋友可以关注公号[数据指导投资]获得文档翻译地址。

1.介绍

backtrader的2个目标

  1. 使用简单
  2. 参考1

backtrader的运行流程

  1. 制定策略
    1.1 确定潜在的可调参数
    1.2 实例化您在策略中需要的指标
    1.3 写下进入/退出市场的逻辑
  2. 创建Cerebro引擎(西班牙语大脑的意思)
    2.1 注入策略
    2.2 使用cerebro.adddata加载回测数据
    2.3 执行cerebro.run
    2.4 使用cerebro.plot绘制可视化图表

backtrader是高度可配置的,希望大家发现其中的乐趣。

2.安装

除了绘图以外,backtrader不需要任何外部依赖包

版本要求

基本要求是:
Python 2.7
Python 3.2 / 3.3 / 3.4 / 3.5
如有绘图需求,则要求 Matplotlib> = 1.4.1

兼容性

backtrader兼容Python2.x/3.x。
backtrader同时在Python2.7和Python3.4下进行过开发和测试。并在Travis下通过持续集成来检查与3.2/3.3/3.5的兼容性测试。

从pypi安装

pip install backtrader
# 如果希望绘图功能,请使用[plotting]选项,这将会安装matplotlib和相关依赖包。
pip install backtrader[plotting]

从源码安装

首先从github网站下载一个版本或最新的压缩包:https://github.com/mementum/backtrader

解压并将源代码拷贝到项目目录

命令如下:

tar xzf backgrader.tgz
cd backtrader
cp -r backtrader project_directory
python setup.py install

如有绘图需求,请手动安装matplotlib。

文档最新更新地址可在公号<数据指导投资>中回复[文档]获得。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值