# 首发于我的博客 The North.
新年第一篇,搞起.
这回写一个好久之前想做,一直搁着没做的东西—— Python 解方程(其实是放假回家,趁着家里电脑重装 LOL 的时间过来写一篇). 咱这回用三种不同的方法,来应对平常碰到的简单方程.
Numpy 求解线性方程组
例如我们要解一个这样的二元一次方程组:
x + 2y = 3
4x + 5y = 6
当然我们可以手动写出解析解,然后写一个函数来求解,这实际上只是用 Python 来单纯做“数值计算”. 但实际上,numpy.linalg.solve 可以直接求解线性方程组.
一般地,我们设解线性方程组形如 Ax=b,其中 A 是系数矩阵,b 是一维(n 维也可以,这个下面会提到),x 是未知变量. 再拿上面地最简单的二元一次方程组为例,我们用 numpy.linalg.solve 可以这样写:
In [1]: import numpy as np
...: A = np.mat('1,2; 4,5') # 构造系数矩阵 A
...: b = np.mat('3,6').T # 构造转置矩阵 b (这里必须为列向量)
...: r = np.linalg.solve(A,b) # 调用 solve 函数求解
...: print r
...:
Out[1]: [[-1.]
[ 2.]]
那么前面提到的“ n 维”情形是什么呢?实际上就是同时求解多组形式相同的二元一次方程组,例如我们想同时求解这样两组