1.seaborn库介绍
是基于matplotlib的图形可视化python包。
可视为matplotlib的补充,而不是替代物。
它提供了一种高度交互式界面,便于用户能够做出各种有吸引力的统计图表。
它能高度兼容numpy与pandas数据结构以及scipy与statsmodels等统计模式。
2.官网:
https://seaborn.pydata.org/index.html
Seaborn is a Python data visualization library based on matplotlib.
seaborn库是基于matplotlib库的python的数据可视化库。
It provides a high-level interface for drawing attractive and informative statistical graphics.
它提供一个高级别的交互式作图方式。
图1
3.安装
3.1 先安装matplotlib库(是基于该库的)
可以参考我自己写过的安装方法,此处省略。
https://www.toutiao.com/i6762516194781069827/
3.2 再安装scipy库
3.2.1 官网:https://www.scipy.org/ #速度太慢,所以pip下载速度也很慢
3.2.2 https://www.scipy.org/scipylib/download.html #下载页面进不去,太卡了
3.2.3 直接进入这个网站,下载
https://github.com/scipy/scipy/releases
scipy-1.3.3.zip #速度太慢,放弃。
3.2.4 还是pip安装快,但建议白天安装更快,晚上估计国外是白天,网速有时候也很慢
pip3.8 install scipy #下载和安装快,建议首先选用
3.3 最后安装seaborn库
3.3.1 pip3.8 install seaborn #安装失败,网速太慢,建议放弃
3.3.2
官网:https://pypi.org/project/seaborn/
下面的这个页面:
https://pypi.org/project/seaborn/#files
seaborn-0.9.0.tar.gz (198.2 kB) #下载速度快。
3.3.3源码安装
3.3.3.1 将文件放在/opt目录下并解压
3.3.3.2 进入目录下
进入cd /opt/seaborn-0.9.0
root@xgj-PC:/opt/seaborn-0.9.0#
3.3.3.3 安装
python3.8 setup.py install#进行安装成功
-----------------------
以下用实例代码来学习
4.柱状图
代码
import matplotlib.pyplot as pltimport seaborn as snssns.set_style("whitegrid") #设置图片背景颜色tips = sns.load_dataset("tips") #载入自带数据集tips#x轴为分类变量day,y轴为数值变量total_bill,利用颜色再对sex分类ax = sns.barplot(x="day", y="total_bill", hue="sex", data=tips) plt.show()
图2
以下这些代码,是系统自带的,也就是说中文化就更有难度。
--------------------
tips = sns.load_dataset("tips") #载入自带数据集tips
#x轴为分类变量day,y轴为数值变量total_bill,利用颜色再对sex分类
ax = sns.barplot(x="day", y="total_bill", hue="sex", data=tips)
--------------------
5.这些seaborn的数据都是从网上导入的,需要联网才可以
https://github.com/mwaskom/seaborn-data
也可以下载下来
图3
图4数据库tips.csv
将代码改一下,且断网试试
#导入模块import matplotlib.pyplot as pltimport seaborn as snssns.set_style("whitegrid") #设置图片背景颜色#tips = sns.load_dataset("tips") #载入网上自带数据集tipstips = sns.load_dataset("/home/xgj/xgjpython/seaborn/seaborn-data-master/tips") #注意tips文件格式csv#x轴为分类变量day,y轴为数值变量total_bill,利用颜色再对sex分类ax = sns.barplot(x="day", y="tip", hue="sex", data=tips) #y="total_bill"plt.show()
图5
好了,解决数据库导入问题了。
以后自己设计的数据库就可以这样导入。