基于em聚类算法 java_EM聚类算法简介

大部分内容援引自别处 有少许修改 EM聚类算法一般多用于为了对数据进行训练而确定相关公式中的参数

1.一般概念介绍

最大期望算法(Expectation-maximization algorithm,又译期望最大化算法)在统计中被用于寻找,依赖于不可观察的隐性变量的概率模型中,参数的最大似然估计。

在统计计算中,最大期望(EM)算法是在概率(probabilistic)模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variable)。最大期望经常用在机器学习和计算机视觉的数据聚类(Data Clustering)领域。最大期望算法经过两个步骤交替进行计算,第一步是计算期望(E),利用对隐藏变量的现有估计值,计算其最大似然估计值;第二步是最大化(M),最大化在 E 步上求得的最大似然值来计算参数的值。M 步上找到的参数估计值被用于下一个 E 步计算中,这个过程不断交替进行。

2. Jensen不等式

回顾优化理论中的一些概念。设f是定义域为实数的函数,如果对于所有的实数x,

4fc1f3d468ec9f20761c9312f0a7a809.png,那么f是凸函数。当x是向量时,如果其hessian矩阵H是半正定的(

e34101018afc203b5bc3bb981b96b602.png),那么f是凸函数。如果

3a96bdeade9f8747dc5cb63f7c551458.png或者

588dcd27ddd6d991807be1d8e4781a1b.png,那么称f是严格凸函数。

Jensen不等式表述如下:

如果f是凸函数,X是随机变量,那么

2a7b9d5b9447d3991d30ce34206413c4.png

特别地,如果f是严格凸函数,那么

4acc0098567d0b483740734bd9969ec8.png当且仅当

5f357db7aeaed6585f53230809d3f895.png,也就是说X是常量。

这里我们将

73e9bcd30e8326d359c8dc7c66d22fc7.png简写为

dfbbde969b7750dd0efb4a288456e7c7.png

如果用图表示会很清晰:

103f1ee3a21b9d0d9b216a0b4dc7adb4.png

图中,实线f是凸函数,X是随机变量,有0.5的概率是a,有0.5的概率是b。(就像掷硬币一样)。X的期望值就是a和b的中值了,图中可以看到

e9494da19310c69b01de55b892cec055.png成立。

当f是(严格)凹函数当且仅当-f是(严格)凸函数。

Jensen不等式应用于凹函数时,不等号方向反向,也就是

8a2ff7012e10032502a1d317d64a1817.png

3.EM算法

给定的训练样本是

200a72605f5054052e96ab33aa88c2e9.png,样例间独立,我们想找到每个样例隐含的类别z,能使得p(x,z)最大。p(x,z)的最大似然估计如下:

ff989e45ff8c24cce74fcdab0cbcf290.png

第一步是对极大似然取对数,第二步是对每个样例的每个可能类别z求联合分布概率和。但是直接求

c394b91332f18d658d28dd1919339010.png一般比较困难,因为有隐藏变量z存在,但是一般确定了z后,求解就容易了。

EM是一种解决存在隐含变量优化问题的有效方法。竟然不能直接最大化

097b21ac7b261f92bf181a65ee1551a7.png,我们可以不断地建立

dbbfd3987ee2f524da7f6337809cadfe.png的下界(E步),然后优化下界(M步)。这句话比较抽象,看下面的。

对于每一个样例i,让

413ea1f8b6c5e0e063ca75e76c1ca08e.png表示该样例隐含变量z的某种分布,

53001862f313e01a04a80319671974c4.png满足的条件是

8b728b1602e214aa2efcad4bc6f877ac.png。(如果z是连续性的,那么

decb2a956affc1e1673a05c21e5d5498.png是概率密度函数,需要将求和符号换做积分符号)。比如要将班上学生聚类,假设隐藏变量z是身高,那么就是连续的高斯分布。如果按照隐藏变量是男女,那么就是伯努利分布了。

可以由前面阐述的内容得到下面的公式:

af2d83344921a0fdd28ae917c2e0de58.png

(1)到(2)比较直接,就是分子分母同乘以一个相等的函数。(2)到(3)利用了Jensen不等式,考虑到

38b3447f7002d998014a33b92d4d90e3.png是凹函数(二阶导数小于0),而且

02bcd495443f08553c6685402ba11e65.png

就是

cedc3d0192492dcbb3c589f6cc300b86.png的期望(回想期望公式中的Lazy Statistician规则)

设Y是随机变量X的函数

6836b7c133111cc62b6756b7a7517b84.png(g是连续函数),那么

(1) X是离散型随机变量,它的分布律为

37496a2548e71a3971fb339ecd5034eb.png,k=1,2,…。若

e3d72a6a8018c5dbf24cd119ee6c2215.png绝对收敛,则有

d75b29a5f800a03be35495f07483b672.png

(2) X是连续型随机变量,它的概率密度为

f4b40c43d86d978746cb9da55d185085.png,若

33e0a7f1bac0bca7a2e1ae8d979e723e.png绝对收敛,则有

0ca0ff550ebfdca816b83c2ffdb73305.png

对应于上述问题,Y是

6bfca31e91ec6b2ef05aa7cdfc12bc84.png,X是

1689a45778bdeb26a2b7666106f554a3.png

006dc284db2b3bf20503e627150efb96.png

0c5ac242e1af9dba993a3db797055b7d.png,g是

ad88eaf17ce4185e38b1629c843bbf9c.png

21a999b0389f603a73c51b5e9d61adfa.png的映射。这样解释了式子(2)中的期望,再根据凹函数时的Jensen不等式:

f75f26002882cb8338c74c3bac497154.png

可以得到(3)。

这个过程可以看作是对

41fd88edf90fbd7b88fe902ff350d8fc.png求了下界。对于

66b475a9a88361d5e2a408f9c0df9178.png的选择,有多种可能,那种更好的?假设

92fea5576f5c221d1d56687aff17acf6.png已经给定,那么

ccff6371b9b2e71509ed47ca7d07de73.png的值就决定于

4630354bc764fb6bbbe9566b6c078e7d.png

d944e9b0fef49957b7f536dc6a0d0f3f.png了。我们可以通过调整这两个概率使下界不断上升,以逼近

e777b2a1cdc30507056c459683313c06.png的真实值,那么什么时候算是调整好了呢?当不等式变成等式时,说明我们调整后的概率能够等价于

7c2b2f85e8dab1eef3061b39eedc6592.png了。按照这个思路,我们要找到等式成立的条件。根据Jensen不等式,要想让等式成立,需要让随机变量变成常数值,这里得到:

7eb2986a0c797bc1763e73bf414b2e08.png

c为常数,不依赖于

b1542552b4a065c456f8d0f20934949d.png。对此式子做进一步推导,我们知道

0cd2e5ca62a4f916856611909867597c.png,那么也就有

8a014bc3af996618a6bf57aa86012c1a.png,(多个等式分子分母相加不变,这个认为每个样例的两个概率比值都是c),那么有下式:

ea79619093070c78d669933a93c1e961.png

至此,我们推出了在固定其他参数

033199f38b4c28dfa98f2c1849703cbc.png后,

f5ba4de63da89aa61a208bfe7d5896f3.png的计算公式就是后验概率,解决了

40320be24e067b56cfc9695c02e666f3.png如何选择的问题。这一步就是E步,建立

5d83ee72a23c0ecc01dddcd078cc6bb7.png的下界。接下来的M步,就是在给定

530378cc6e3512c69db3d8095529d817.png后,调整

cee7d4729d30d1def61141fa498136c5.png,去极大化

8740cc748b71d44cce4190d10df90bb6.png的下界(在固定

1d4e44d243ff4238cccd09b2b75a41c1.png后,下界还可以调整的更大)。那么一般的EM算法的步骤如下:

循环重复直到收敛 {

(E步)对于每一个i,计算

29f4211052b9df836b53f067fca1313e.png

(M步)计算

3ed095fd9c420e34492a7ef5464260b0.png

}

这里顺便提一下其中的p的计算式可以实例化 例如p的公式可以被 贝叶斯公式替代 另外对于z和

cee7d4729d30d1def61141fa498136c5.png的初始值,有的资料给出的办法是第一次猜测隐含类别变量z,对于

c394b91332f18d658d28dd1919339010.png可以复给一个随意的初始值

那么究竟怎么确保EM收敛?假定

ad938872c85a0d9eed552c45bc433a0b.png

91ad31909e2bdc2dbab2d58364a8e41c.png是EM第t次和t+1次迭代后的结果。如果我们证明了

6bf7e164174b1ef801fb16cbc45e9307.png,也就是说极大似然估计单调增加,那么最终我们会到达最大似然估计的最大值。下面来证明,选定

812c78593ba8c0fd84f235f1feb7f932.png后,我们得到E步

ea5ed1108cc1210187a1b7a7da20deae.png

这一步保证了在给定

ebfd10b19b25fe9865282c3ac9cf5ddd.png时,Jensen不等式中的等式成立,也就是

ba09fa482135dc8797f387cc6d198d9c.png

然后进行M步,固定

54c052f494e7f392baf768d87cb58a96.png,并将

baaa24cdbcd51771b24cf68af5d1fc38.png视作变量,对上面的

b5d46cf252b82ed160fec14ce8e844c4.png求导后,得到

5fc3628cbdb049d8284062e4e5e5a89a.png,这样经过一些推导会有以下式子成立:

e8387e7c4e52e8069979d0e467bb885d.png

解释第(4)步,得到

4ee647bc0e73521b4464745ade5721ef.png时,只是最大化

54d4d018f4b4efe8d236713bb5892866.png,也就是

d7e04d820cfe8003a95452cbb682a33d.png的下界,而没有使等式成立,等式成立只有是在固定

31ac941b3e3e2a1319c7b17df6d80b7d.png,并按E步得到

28d9428e0786bbe443e3d5b43c2e8019.png时才能成立。

况且根据我们前面得到的下式,对于所有的

f86542763db9e3fc866a6a4ed35e294f.png

d7ed2699f4b1bfc2f1b064fd0f1d4856.png都成立

36def578599d179eca56514afbe9fb24.png

第(5)步利用了M步的定义,M步就是将

fcb6ce657b878740e0ce00b2c2dc794a.png调整到

3c70973f1d250eb53caf9ff3a0bb5ce7.png,使得下界最大化。因此(5)成立,(6)是之前的等式结果。

这样就证明了

2c632925e7dd1f5889d507605a2dbc71.png会单调增加。一种收敛方法是

380d301e149df49707fc24cce27e37a7.png不再变化,还有一种就是变化幅度很小。

再次解释一下(4)、(5)、(6)。首先(4)对所有的参数都满足,而其等式成立条件只是在固定

3e7029aff0da3b7cfeabed3235691bdc.png,并调整好Q时成立,而第(4)步只是固定Q,调整

d9a7e6f3254640758a1a45d5b87caf4e.png,不能保证等式一定成立。(4)到(5)就是M步的定义,(5)到(6)是前面E步所保证等式成立条件。也就是说E步会将下界拉到与

2d351b00809db8d3f0c8e53b1e5182e9.png一个特定值(这里

fedb30a15efe1eb89582117a1beab036.png)一样的高度,而此时发现下界仍然可以上升,因此经过M步后,下界又被拉升,但达不到与

3bf0fe16db767bdd45202a93f82e0a75.png另外一个特定值一样的高度,之后E步又将下界拉到与这个特定值一样的高度,重复下去,直到最大值。

如果我们定义

0e3f3d79d078b3e248bb6827a1a713fc.png

从前面的推导中我们知道

5ef9340f1d61b07a3e2ee5f2bf2973e7.png,EM可以看作是J的坐标上升法,E步固定

adaa805bbb2c9ef2db37667354481488.png,优化

0d771df75c88b44b941563278d49c487.png,M步固定

1b448ea6cb0cfd529e4d9867c35acfe8.png优化

adb47dfdc4af97ca8cfdd663def52f85.png

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值