java的山形命名_[LeetCode] 852. Peak Index in a Mountain Array 山形数组的顶峰坐标

本文介绍了解决寻找山形数组顶峰的问题,通过三种方法实现:使用STL内置函数max_element()、查找第一个下降点以及应用二分搜索法。每种方法都附有详细的解释及代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Let's call an array `A` a *mountain* if the following properties hold:

A.length >= 3

There exists some 0 < i < A.length - 1 such that A[0] < A[1] < ... A[i-1] < A[i] > A[i+1] > ... > A[A.length - 1]

Given an array that is definitely a mountain, return any i such that A[0] < A[1] < ... A[i-1] < A[i] > A[i+1] > ... > A[A.length - 1].

Example 1:

Input: [0,1,0]

Output: 1

Example 2:

Input: [0,2,1,0]

Output: 1

Note:

3 <= A.length <= 10000

0 <= A[i] <= 10^6

A is a mountain, as defined above.

这道题定义了一种山形的数组,说是有一个最高点,然后向两边各自降低,让我们找出山峰的位置。其实这道题跟之前那道 [Find Peak Element](http://www.cnblogs.com/grandyang/p/4217175.html) 非常的类似,只不过那道题有很多局部峰值,而这里道题只有一个全局峰值。题目中限定了山峰一定存在,即一定有一个最高点,反应在数组中就是最大值,那么问题就转换为了求数组中最大值的位置,最简单直接的方法就是遍历数组找出最大值的位置即可,这里使用了 STL 的内置函数 max_element() 来一行解题,参见代码如下:

解法一:

class Solution {

public:

int peakIndexInMountainArray(vector& A) {

return max_element(A.begin(), A.end()) - A.begin();

}

};

由于题目中限定了山峰一定存在,所以我们也可以直接直接来找第一个下降的位置,即 A[i] > A[i+1] 的地方,那么i位置一定就是山峰了,注意i的遍历范围要去掉首尾两个数字,参见代码如下:

解法二:

class Solution {

public:

int peakIndexInMountainArray(vector& A) {

for (int i = 1; i < (int)A.size() - 1; ++i) {

if (A[i] > A[i + 1]) return i;

}

return 0;

}

};

上面两种解法都是线性的时间复杂度,能不能更快一点呢?那么就只有使用二分搜索法来加快搜索速度了,其实这是博主的总结帖 [LeetCode Binary Search Summary 二分搜索法小结](http://www.cnblogs.com/grandyang/p/6854825.html) 中的第五类情况,跟前的稍有不同的是 right 的初始化,之前的情况博主基本上都是用数组长度初始化 right 的,但是这里要用数组长度减1来初始化 right,因为要跟紧邻的右边的数字比较,这样初始化 right 的意义在于 mid+1 就不会越界了,参见代码如下:

解法三:

class Solution {

public:

int peakIndexInMountainArray(vector& A) {

int n = A.size(), left = 0, right = n - 1;

while (left < right) {

int mid = left + (right - left) / 2;

if (A[mid] < A[mid + 1]) left = mid + 1;

else right = mid;

}

return right;

}

};

Github 同步地址:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值