python柱形图绘制_Python:matplotlib 和 Seaborn 之簇状柱形图、分面 (三十五)

本文介绍了如何使用Seaborn库在Python中绘制簇状柱形图和热图,以展示两个分类变量之间的关系。通过示例展示了countplot函数如何创建簇状柱形图,并调整图例位置。同时,文章还探讨了使用heatmap函数制作热图以及分面技术,用于在不同分类变量子集中比较数值变量的分布。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

簇状柱形图

为了描绘两个分类变量之间的关系,我们可以将在上节课见到的单变量条形图扩展为簇状柱形图。和标准条形图一样,我们依然需要描绘每组的数据点计数,但是每组现在是两个变量的标签组合。因此我们需要按照某种顺序整理长条,使图形容易解释。在簇状柱形图中,我们根据第一个变量的级别将长条分成一簇,然后在每个簇内根据第二个变量对长条进行排序。使用 seaborn 的 countplot 函数通过一个示例来讲解最容易理解。要使图形从单变量图形变成双变量图形,我们用 "hue" 参数添加第二个变量:

sb.countplot(data = df, x = 'cat_var1', hue = 'cat_var2')

BOoBCgmZXc.png

第一个分类变量用很宽泛的 x 轴表示(对照组、实验 A、实验 B)。在每组绘制三个长条,第二个分类变量的每个级别对应一个长条(低、中、高)。用颜色区分每个级别,并在图形的右上角用图例记录。图形告诉我们三个 "cat_var1" 群组在 "cat_var2" 级别的频率分布很平衡,虽然 "实验 A" 组与另外两组相比,中间点(橙色中心长条)的计数稍微低些。

但是,该示例中的图例位置有点干扰性。我们可以使用 Axes 方法设置 countplot 返回的 Axes 对象的 legend 属性。

ax = sb.countplot(data = df, x = 'cat_var1', hue = 'cat_var2')

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值