lisp矩形单边加10_单边矩形扩展A

这篇博客探讨了使用LISP进行矩形单边加10操作的路径规划问题。文章引用了多篇关于路径搜索、优化和格栅地图上的路径规划算法的学术论文,包括A*算法、Jump Point Search以及在线图修剪等技术,旨在改善路径查找效率和优化网格地图上的路径规划。
摘要由CSDN通过智能技术生成

[1] Hart P E, Nilsson N J, Raphael B. A formal basis for the heuristic determination of minimum cost paths[J]. IEEE Transactions on Systems Science and Cybernetics, 1968, 4(2):100-107.

[2] Harabor D, Botea A, Kilby P. Path symmetries in undirected uniform-cost grids[C]//Proceedings of the 9th Symposium on Abstraction, Reformulation, and Approximation. Menlo Park, USA:AAAI Press, 2011:58-61.

[3] Harabor D, Botea A. Breaking path symmetries on 4-connected grid maps[C]//Proceedings of the 6th Artificial Intelligence and Interactive Digital Entertainment Conference. Menlo Park, USA:AAAI Press, 2010:33-38.

[4] Harabor D. Graph pruning and symmetry breaking on grid maps[C]//Proceedings of the 22nd International Joint Conference on Artificial Intelligence. Menlo Park, USA:AAAI Press, 2011:2816-2817.

[5] Yap P, Burch N, Holte R, et al. Block A*:Database-driven search with applications in any-angle path-planning[C]//Proceedings of the 25th AAAI Conference on Artificial Intelligence. Menlo Park, USA:AAAI Press, 2011:120-125.

[6] Harabor D, Grastien A. Online graph pruning for pathfinding on grid maps[C]//Proceedings of the 25th AAAI Conference on Artificial Intelligence. Menlo Park, USA:AAAI Press, 2011:1114-1119.

[7] Harabor D, Grastien A. Improving jump point search[C]//Proceedings of the 24th International Conference on Automated Planning and Scheduling. Menlo Park, USA:AAAI Press, 2014:128-135.

[8] Uras T, Koenig S, Hernández C. Subgoal graphs for optimal pathfinding in eight-neighbor grids[C]//Proceedings of the 23rd International Conference on Automated Planning and Scheduling. Menlo Park, USA:AAAI Press, 2013:24-32.

[9] Botea A. Ultra-fast optimal pathfinding without runtime search[C]//Proceedings of the 7th AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment. Menlo Park, USA:AAAI Press, 2011:122-127.

[10] Botea A. Fast, optimal pathfinding with compressed path databases[C]//Proceedings of the 5th Annual Symposium on Combinatorial Search. Menlo Park, USA:AAAI Press, 2012:204-205.

[11] Botea A, Harabor D. Path planning with compressed all-pairs shortest paths data[C]//Proceedings of the 23rd International Conference on Automated Planning and Scheduling. Menlo Park, USA:AAAI Press, 2013:293-297.

[12] Strasser B, Harabor D, Botea A. Fast first-move queries through run-length encoding[C]//Proceedings of the 7th Annual Symposium on Combinatorial Search. Menlo Park, USA:AAAI Press, 2014:157-165.

[13] Nash A, Koenig S. Any-angle path planning[J]. AI Magazine, 2013, 34(4):85-107.

[14] Daniel K, Nash A, Koenig S, et al. Theta*:Any-angle path planning on grids[J]. Journal of Artificial Intelligence Research, 2010, 39(1):533-579.

[15] Nash A, Koenig S, Tovey C. Lazy theta*:Any-angle path planning and path length analysis in 3D[C]//Proceedings of the 3rd Annual Symposium on Combinatorial Search. Menlo Park, USA:AAAI Press, 2010:153-154.

[16] Thorpe C E, Matthies L H. Path relaxation:Path planning for a mobile robot[C]//Proceedings of the 4th National Conference on Artificial Intelligence. Menlo Park, USA:AAAI Press, 1983:318-321.

[17] Zhang A, Li C, Bi W. Rectangle expansion A* pathfinding for grid maps[J]. Chinese Journal of Aeronautics, 2016, 29(5):1385-1396.

[18] Sturtevant N R. Benchmarks for grid-based pathfinding[J]. IEEE Transactions on Computational Intelligence and AI in Games, 2012, 4(2):144-148.

[19] Sturtevant N R. The grid-based path planning competition[J]. AI Magazine, 2014, 35(3):66-69.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值