图像增强:对原图像进行变换或附加信息,有选择地突出感兴趣的特征或抑制不需要的特征,使图像与视觉响应特性相匹配,加强图像判读和识别效果
- 空间域图像增强:对图像灰度值进行处理改善图像视觉效果
- 变换域图像增强:在变换域内修改图像的变换系数再反变换到空间域
- 傅里叶变换
- 小波变换
- 颜色空间变换
- 主成分变换
- 伪彩色处理
- 图像融合
灰度变换图像增强
根据目标条件按照一定变换关系,逐像元改变像元灰度值
- 线性变换:灰度值的对应关系符合线性关系式y=kx
- 分段线性变换:对图像不同灰度值范围进行不同的线性变换
- 反比变换:将图像中像元灰度值取反,
- 幂次变换:
,a>1拉伸高值区域,压缩低值区域
- 对数变换:
压缩高值区域,拉伸低值区域
- 反对数变换:
拉伸高值区域,压缩低值区域
直方图调整图像增强
- 直方图匹配:以参考图像的直方图为标准作变换,使两幅图像的直方图相同或近似

本文详细介绍了图像增强的各种方法,包括灰度变换、直方图调整、微分运算、形态学梯度、傅里叶变换、小波变换、颜色空间变换等。特别强调了同态滤波在图像增强中的应用,并探讨了其在Python中的实现。此外,还讨论了主成分变换在图像融合和增强中的作用。
最低0.47元/天 解锁文章
4535

被折叠的 条评论
为什么被折叠?



