图像同态滤波 python实现_8图像增强

本文详细介绍了图像增强的各种方法,包括灰度变换、直方图调整、微分运算、形态学梯度、傅里叶变换、小波变换、颜色空间变换等。特别强调了同态滤波在图像增强中的应用,并探讨了其在Python中的实现。此外,还讨论了主成分变换在图像融合和增强中的作用。

图像增强:对原图像进行变换或附加信息,有选择地突出感兴趣的特征或抑制不需要的特征,使图像与视觉响应特性相匹配,加强图像判读和识别效果

  • 空间域图像增强:对图像灰度值进行处理改善图像视觉效果

fd51327b1a2bd27eb132987d3fe17854.png
  • 变换域图像增强:在变换域内修改图像的变换系数再反变换到空间域
  1. 傅里叶变换
  2. 小波变换
  3. 颜色空间变换
  4. 主成分变换
  • 伪彩色处理
  • 图像融合

灰度变换图像增强

根据目标条件按照一定变换关系,逐像元改变像元灰度值

,如线性变换、分段线性变换和非线性变换

cfbe93de58e84ebac018c4961bb3394f.png
  • 线性变换:灰度值的对应关系符合线性关系式y=kx

b511306e57c1f89ca5d93e52bb9fd5c9.png
  • 分段线性变换:对图像不同灰度值范围进行不同的线性变换

fca0c14c89ad146725cc8bc084796cf1.png
  • 反比变换:将图像中像元灰度值取反,

f9911ff1d61e01927be0eabe0ac541f8.png
  • 幂次变换:
    ,a>1拉伸高值区域,压缩低值区域

d6b2c12daf1b88860cb196ea2a4845f0.png
  • 对数变换:
    压缩高值区域,拉伸低值区域

3d412158ba2453f104d59618c47ecadc.png
  • 反对数变换:
    拉伸高值区域,压缩低值区域

6cbe317ffef81d7d9dc7dc34844c06b7.png

直方图调整图像增强

  • 直方图匹配:以参考图像的直方图为标准作变换,使两幅图像的直方图相同或近似

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值