fasttext文本分类python实现_Windows下fasttext文本分类

本文详细介绍了在Windows下如何利用Python实现fasttext的文本分类,包括安装、主要函数的使用以及与朴素贝叶斯模型的比较。通过实例展示了fasttext的train_supervised函数用于训练和评估模型,并探讨了不同参数对模型性能的影响。
摘要由CSDN通过智能技术生成

在写论文的时候了解到有fasttext这种文本分类方法,也看了很多别人的博客,但感觉使用这种方法的人并不是很多,或者使用的版本有些旧。本文会介绍下Windows下最新的fasttext版本以及如何进行文本分类

以下是本篇文章正文内容,下面案例可供参考

fasttext简介

fasttext是2016年facebook开源的一款高效词表示和文本分类工具。它是一个浅层的神经网络模型,类似于word2vec的CBOW,主要用途就是两个——词向量化和文本分类。

Windows下安装

代码如下(示例):

pip install fasttext

版本

2019年6月25官网发布了Windows下的最新版本,这个版本将原来的官方版fastText和非官方版fasttext合并,现在最新版本fasttext在github repository和 pypi.org都可以找到。

新版特色

保留了官方API和顶层函数(例如train_unsupervised和train_supervised)以及返回的numpy对象。 从非正式API中删除了cbow,skipgram和supervised函数。 并且将非官方API中的好主意带到了官方API中。 特别是,我们喜欢WordVectorModel这类很python的方法。

主要函数及用法

如果是文本分类用到的函数就是 train_supervised

import fasttext

model = fasttext.train_supervised('data.train.txt')

这里data.train.txt是一个文本文件,每行包含一个训练语句以及标签。 默认情况下,我们假设标签是带有字符串__label__前缀的string.

该函数主要参数如下:

input # training file path (required)

lr # learning rate [0.1]

dim # size of word vectors [100]

ws # size of the context window [5]

epoch # number of epochs [5]

minCount # minimal number of word occurences [1]

minCountLabel # minimal number of label occurences [1]

minn # min length of char ngram [0]

maxn # max length of char ngram [0]

neg # number of negatives sampled [5]

wordNgrams # m

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
FastText是Facebook开发的一种文本分类算法,它通过将文本分解成n-gram特征来表示文本,并基于这些特征训练模型。PyTorch是一个流行的深度学习框架,可以用于实现FastText文本分类算法。 以下是使用PyTorch实现FastText文本分类的基本步骤: 1. 数据预处理:将文本数据分成训练集和测试集,并进行预处理,如分词、去除停用词、构建词典等。 2. 构建数据集:将预处理后的文本数据转换成PyTorch中的数据集格式,如torchtext中的Dataset。 3. 定义模型:使用PyTorch定义FastText模型,模型包括嵌入层、平均池化层和全连接层。 4. 训练模型:使用训练集训练FastText模型,并在验证集上进行验证调整超参数。 5. 测试模型:使用测试集评估训练好的FastText模型的性能。 以下是一个简单的PyTorch实现FastText文本分类的示例代码: ```python import torch import torch.nn as nn import torch.optim as optim from torchtext.legacy.data import Field, TabularDataset, BucketIterator # 数据预处理 TEXT = Field(tokenize='spacy', tokenizer_language='en_core_web_sm', include_lengths=True) LABEL = Field(sequential=False, dtype=torch.float) train_data, test_data = TabularDataset.splits( path='data', train='train.csv', test='test.csv', format='csv', fields=[('text', TEXT), ('label', LABEL)] ) TEXT.build_vocab(train_data, max_size=25000, vectors="glove.6B.100d") LABEL.build_vocab(train_data) # 定义模型 class FastText(nn.Module): def __init__(self, vocab_size, embedding_dim, output_dim): super().__init__() self.embedding = nn.Embedding(vocab_size, embedding_dim) self.fc = nn.Linear(embedding_dim, output_dim) def forward(self, x): embedded = self.embedding(x) pooled = embedded.mean(0) output = self.fc(pooled) return output # 训练模型 BATCH_SIZE = 64 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') train_iterator, test_iterator = BucketIterator.splits( (train_data, test_data), batch_size=BATCH_SIZE, sort_within_batch=True, device=device ) model = FastText(len(TEXT.vocab), 100, 1).to(device) optimizer = optim.Adam(model.parameters()) criterion = nn.BCEWithLogitsLoss().to(device) for epoch in range(10): for batch in train_iterator: text, text_lengths = batch.text labels = batch.label optimizer.zero_grad() output = model(text).squeeze(1) loss = criterion(output, labels) loss.backward() optimizer.step() with torch.no_grad(): total_loss = 0 total_correct = 0 for batch in test_iterator: text, text_lengths = batch.text labels = batch.label output = model(text).squeeze(1) loss = criterion(output, labels) total_loss += loss.item() predictions = torch.round(torch.sigmoid(output)) total_correct += (predictions == labels).sum().item() acc = total_correct / len(test_data) print('Epoch:', epoch+1, 'Test Loss:', total_loss / len(test_iterator), 'Test Acc:', acc) ``` 这个示例代码使用了torchtext库来处理数据集,并定义了一个FastText模型,模型包括一个嵌入层、一个平均池化层和一个全连接层。模型在训练集上训练,并在测试集上进行测试,并输出测试集的损失和准确率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值