空间点到直线的距离c语言,空间两直线间距离公式(文档篇).doc

空间两直线间距离公式(文档篇).doc

空间两直线间距离公式(文档8篇)

以下是网友分享的关于空间两直线间距离公式的资料8篇,希望对您有所帮助,就爱阅读感谢您的支持。

第一篇

38

高等数学研究 Vo.l9,No.2

STUDIESINCOLLEGEMATHEMATICSMar.,2006

点到空间直线距离公式的两种简洁证明

王 焕

(西北大学数学系 西安 710069)

*

摘 要 对空间中任意一点P(x0,y0,z0)到直线l:(A1x0+B1y0+C1z0+D1)n2-(A2x0+B2y0+C2z0+D2)n1

→→

1 A1x+B1y+C1z+D1=0

的距离公式:d=

2 A2x+B2y+C2z+D2=0

n1 n2

,介绍另两种过程简洁并且几何意义明显的证明

关键词 距离;外接圆直径;二重矢量积公式 中图分类号 O172

文[1]中利用求条件极值的拉格朗日乘数法,给出空间中点P(x0,y0,z0)到直线

l:

的距离公式

d=

1 A1x+B1y+C1z+D1=0 2 A2x+B2y+C2z+D2=0

→→

(1)

(A1x

0+B1y0+C1z0+D1)n2-(A2x0+B2y0+C2z0+D2)n1

n1 n2

(2)

其中ni=(Ai,Bi,Ci),i=1,2,并作了证明.使用该公式求P点到直线l的距离时,不需要预先求出直线l上的任何点.本文试图对公式(2)介绍另两种过程简洁并且几何意义明显的证明.

如图,平面 1, 2相交于直线l,点P(x0,y0,z0)到 1, 1,l的射影分别为A(x1,y1,z1),B(x2,y2,z2),C(x3,y3,z3),则点P到l的距离d=.

证法1 由题设和作图易知:P,A,B,C四点共圆,线段PC就是 PAB外接圆的直径,由正弦定理得

d=2R==x2=x0+tA2

n1n2=→→

sin APBn1 n2x1=x0+sA1

(3)

令=tn2=sn1y2=y0+tB2,,y1=y0+sB1,以及直线方程(1)易得

z2=z0+tC2z1=z0+sC1

A2x0+B2y0+C2z0+D2A1x0+B1y0+C1z0+D1

t=-s=-222222A2+B2+C2A1+B1+C1

从而

第9卷第2期 王 焕:点到空间直线距离公式的两种简洁证明

39

AB

2

=AB=(PB-PA)=

2

2

2

2

2

(tn2-sn1)=tn2+sn1-2tsn1n2=

(A1x0+B1

y0+C1z0+D1)n2-(A2x0+B2y0+C2z0+D2)n(A1+B1+C1)(A2+B2+C2)

因而n1n2=(A1x0+B1y0+C1z0+D1)n2-(A2x0+B2y0+C2z0+D2)n1,代入(3)式即得(2)式.

证法2 设Q是直线l上任意一点,取直线l的方向为=n1 n2则由矢量积的几何意义得 n1 n2

不妨就取Q点位于C点处,则由三个矢量的二重矢量积公式可得

d=

由题设和作图易知

d=

=

n1 n2 (4)

=

n1 n2

n1 n2

=

(n1 PC)n2-(n2 PC)n1

→→→→→→

n1 n2

(5)

n1 PC=n1 PA=-(A1x0+B1y0+C1z0+D1)

n2 PC=n2 PB=-(A2x0+B2y0+C2z0+D2)

代入(5)式即得(2)式.

参考文献

[1]高遵海.点到空间直线距离的一个公式.高等数学研究.2005.(8)2,4-5

→→→

(6)

(上接第37页)6 函数fx,y)在点(x0,y0)偏导数存在,但不一定可微

(x,y) (0,0),例6 讨论f(x,y)=在点(0,0)处的可导性及可微性+y

0,(x,y)=(0,0)

解 由xlim=0,得f ,0)=0.同理f ,0)=0,故函数f(x,y)在点(0,0)x(0y(0→0x处的各偏导数存在.

z-fx(0,0) x-fy(0,0) y但由于 lim=lim=lim不存在,所以→0 x→0x→0( x)+( y) y→0( x)+( y) y→0

z-fx(0

,0) x-fy(0,0) y 0( ),( →0),故f(x,y)在点(0,0)处不可微.综上讨论,二元函数在一点处有极限、连续、偏导数存在以及可微等性质之间的相互关系与一元函数的有关性质有相似之处,亦有许多不同之处.搞清二元函数的上述几个概念及其相互关系,是学好多元函数微积分的基础.

一元函数与多元函数性质的关系图

多元函数:一元函数:

参考文献

[1]朱时.数学分析扎记.贵州省教育出版社.

[..

第二篇

空间两点间的距离公式

海南中学 陈封军

一、教学任务分析

(1)通过表示特殊长方体(所有棱分别与坐标轴平行)顶点的坐标,探索并得出空间两点间的距离公式。

(2)通过推导和应用空间两点间的距

参与评论 您还未登录,请先 登录 后发表或查看评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:游动-白 设计师:我叫白小胖 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值