python图像差分法目标检测_Python实现简单的目标检测:基于均值的背景差分法

本文介绍了使用Python实现基于均值背景差分法进行目标检测的基本原理和步骤,包括背景建模、帧差比较、前景提取,并展示了相应的代码示例。虽然这种方法对视频时长、光线变化敏感,但可以作为简单的运动物体检测手段。
摘要由CSDN通过智能技术生成

原理

背景差分法的思想是用图像序列中的当前帧和背景参考模型比较来检测运动物体。其核心是背景的建模方法。这里实现一种简单的背景建模方法,即对视频的全部帧取像素平均值得到背景。

当然这种简单的算法局限性很大,视频的时长,光线与背景的变化都会对检测效果产生极大的影响。

实现步骤

背景建模:对视频的全部帧取像素平均值得到背景

比较:当前帧与背景作做差,差值大于一定阈值的像素点识别为前景

提取:在原始帧上扣取出前景

效果

原始图像

建立的背景

目标检测结果

源代码

import matplotlib.pyplot as plt

import numpy as np

from PIL import Image

# 读取帧数

img_number = 48

# 各帧的集合

all_img = [np.array(Image.open('F:/input/'+str(i+1)+'.jpg', 'r')) for i in range(img_number)]

# 帧的宽高

h = all_img[0].shape[0]

v = all_img[0].shape[1]

# 计算得到背景

back_img = np.zeros((h,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值