loss 曲线 神经网络_地震去噪新探索(二)——无监督卷积神经网络调优实战

博主在探索地震数据去噪的过程中,通过调整神经网络结构,特别是引入反卷积层,实现了显著的去噪效果。在尝试不同优化器、损失函数和学习率后,发现反卷积网络能有效收敛并提取地震数据的特征。未来将继续研究反卷积在网络中的作用并优化创新。
摘要由CSDN通过智能技术生成

“心中有歌,到处都是舞台”。

95b6e8d89244df9a8b1244d7f334e36b.png

自从投入了自编码的深度学习研究后,一路走来就是磕磕碰碰。

上一篇将地震信号用在了自编码卷积神经网络降噪(见《地震去噪新探索——无监督卷积神经网络实战》),结果那叫一个惨。如下面的图示,上边是噪声图,下边是去噪图:

d86bb6186354ccdbe52ca8fa502c9a81.png
44205ace3f302146c7e6da80bd6fc852.png

从去噪效果来看,仅能获取到一些支离破碎的有效信号,这是一张完全拿不出手的效果图。

01屡败屡战的调优之旅

卷积神经网络不是更能学习到特征细节,性能更好吗?为啥我做出来的效果如此之惨?

前期的参数设置包括:使用10000个28*28的训练小块,训练epoch:5,学习率:0.001,优化器:tf.train.AdamOptimizer(learn).minimize(cost),LOSS函数:tf.nn.sigmoid_cross_entropy_with_logits(labels=targets_, logits=logits_),cost = tf.reduce_mean(loss)

网络结构图为:

f2a7602de2a966cc4c6e75d7039f16ca.png

训练损失曲线:

0182c8003709315d2128cbbbe9dd330d.png

1.归一化的优化

惨不忍睹的LOSS训练结果引起了我的注意。将收敛失败这个问题拿到网上去寻找答案,有大神说这是归一化没做好。

那就先进行2项优化:

一是控制训练样本的取值范围到(-1,1),使用方法是原值除以最大值的方法,就像这样:

noisy_imgs=noisy_imgs/abs(noisy_imgs).max()

二是在训练网络的每个卷积后增加BN,就像这样:

conv1 = tf.layers.conv2d(inputs_, 64, (3,3), padding='same', activation=tf.nn.relu)

conv1 = tf.layers.batch_normalization(conv1, training=True)

再进行训练,效果不明显,还是没有收敛。

另外,很多归一化的方法是将取值范围集中在(0,1),使用这样的算法:

imgs= (imgs-imgs.min())/(imgs.max()-imgs.min())#归一化到[0,1]

结果证明对于地震数据完全没法训练,曲线是这样的:

e9266554e6611a0c20ab509dbb7030e0.png

2.学习函数的调整

“一计不成,再生一计”。

我想到了对优化器和LOSS函数进行改动。

在神经网络学习中,损失函数的作用是度量神经网络的输出的预测值,计算与实际值之间的差距,可以说是实现学习的关键函数。常见的损失函数包括:最小二乘损失函数、交叉熵损失函数、回归中使用的smooth L1损失函数等。

而优化函数的原理是:把损失值从神经网络的最外层传递到最前面,实现反向传播学习,这是神经网络实现持续学习达到收敛的关键。如最基础的梯度下降算法包括:随机梯度下降算法,批量梯度下降算法,带动量的梯度下降算法,Adagrad,Adadelta,Adam等。

那我就先从优化器函数入手吧。

既然学习率为0.001无法收敛,那试试0.0001呢。结果还真收敛了,如下图:

3ddf672800332bcf8921c64f373a055b.png

那预测效果如何呢?结果是一塌糊涂,连基本特征都学习不到,如下图:

38f1920e1da53f6d7d4ac58c4ae0f02e.png

这是怎么回事呢?我的理解是学习率太高,就会让神经网络学习到更细粒度的特征,而失去了我们想要的特征。就相当于研究一个人的特征,我们通常是从五官、体型等方面来看,但如果从细胞的角度的去学习,那就无法还原人的外貌特征了。

另外,设置为0.0005也好不了多少。

那改动LOSS函数能不能起作用呢?

比如改为softmax_cross_entropy_with_logits,像这样:

loss = tf.nn.softmax_cross_entropy_with_logits(labels=targets_, logits=logits_)

结果是无法学习,如下图:

bd7a5f6bd356da9f717eba6820dc56da.png

3.其它的尝试

两板斧过去,还没有看到变好的迹象。我没有放弃,我开始思考为啥原程序训练Mnist效果都如此好,换到地震数据训练就不行了呢?

我想到了训练样本数据是不是有问题。我又进行了以下尝试:

一是调整训练样本数据的尺寸:有128*128,40*40,32*32,28*28等。

二是对样本数据进行截断:地震数据不是异常值多,偏离度大吗。我就筛选数据集中的90%区间,区间外面的进行截断,再进行归一化。这样数据分布就均匀多了。

三是扩充采样数据来源,从不同的数据源采样。是不是数据更丰富,训练效果就会改观呢?

……

你可以想象做这些实验有多么琐碎和繁杂,然而现实却是如此的无情。最后结局都是一个——失败,根本拿不出一个像样的效果,连一个较为清晰的结果都没有。

02 柳暗花明,找到了一个方法

“山穷水复疑无路,柳暗花明又一村”。

在持续N天被现实按在地上摩擦后,我痛定思痛:到底解决的方向在哪里?

在现有这个无可救药的神经网络中,提高学习率可以收敛,但是无法学习到有效特征。降低学习率可以学习到有效特征但是无法收敛,也就是说无法持续优化的学习。整个成了一个悖论。

面对这张丑陋的预测结果图,我意识到可能是网络结构本身出了问题。很有可能是网络对图片数据学习有效,对地震数据学习就是不行。

在翻阅了其它研究者的论文后,我逐步聚焦到了一个结构——解码。我的程序在这部分是使用卷积核上采样的结构。像这样:

conv4 = tf.image.resize_nearest_neighbor(conv3, (8,8))

conv4 = tf.layers.conv2d(conv4, 32, (3,3), padding='same', activation=tf.nn.relu)

而其它地震论文结构却包含了一个我没有的结构——反卷积。

如果我也使用反卷积,甚至就只有卷积和反卷积这种最简单的自编码结构,效果如何呢?像这样的结构:

x = Conv2D(32, (3, 3), activation='relu', padding='same')(input_img)

x = Conv2D(32, (3, 3), activation='relu', padding='same')(x)

x = Conv2DTranspose(32, (3,3), padding='same', activation='relu', kernel_initializer='glorot_normal')(x)#反卷积

x = Conv2DTranspose(32, (3,3), padding='same', activation='relu', kernel_initializer='glorot_normal')(x)

decoded = Conv2DTranspose(1, (1,1), padding='same', activation='tanh', kernel_initializer='glorot_normal')(x)

结果是令人惊艳的。下图是收敛的效果,很快就能够收敛:

7b72819c9a1d46733143293ab0e3624c.png

训练的效果更好。以下分别是原图,噪声图和去噪效果图:

d9f46193dfce5c0453ba5a1320da9e15.png
d8c7d07b42e208992df46f60ef691cb7.png
5f5c1a45eacebb438a5a92119136ce9d.png

可以看到,上面噪声几乎淹没了有效信号。然后通过训练,仅仅5个迭代,就较好的分离出了有效信号。

03 下一步计划

“既然选择了远方 便只顾风雨兼程”。

看来反卷积是是解决地震学习的一把钥匙。下一步我将研究反卷积能适应地震处理的原因,然后继续进行优化和创新,并使用其它算法做对比实验,争取做出更好的效果。

如果喜欢请点“赞”,如果小伙伴对程序感兴趣,可以联系我获取。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值