皮尔逊、肯德尔、斯皮尔曼相关分析分别是针对什么_SPSS之相关分析

4a283091aa6beeb06f6daf9a44a09d72.gif 9f82d8013d77ce0541a785194c3803e5.gif

点击蓝字关注我们

变量间的关系分为确定性关系和不确定性关系两类。确定性关系即通常所说的函数关系,非确定性关系即相关关系。

相关关系用于描述两个变量之间关系的密切程度,它反映的是当控制了其中一个变量的取值后,另一个变量的变异程度。其显著特点是变量不分主次,被置于同等的地位。

基本概念

01 直线相关:两个变量呈线性共同增大,或者呈线性一增一减的情况。直线相关要求两个变量服从联合的双变量正态分布,如果不服从,则应考虑变量交换,或采用等级相关来分析。

02 曲线相关:两个变量存在相关趋势,但并非线性的,而是呈各种可能的趋势。曲线相关分析一般先将其进行变量交换,再将趋势交换为直线来分析,或者采用曲线回归方法来分析。

03 正相关和负相关:如果A变量增加时B变量也增加,则称为正相关;如果A变量增加时B变量减少,则称为负相关。

04 完全相关:两个变量的相关程度达到了亲密无间的程度,即确定的函数关系。

反映变量间关系的紧密程度的指标为相关系数r,r的取值范围为-1到1,r的绝对值越接近1,则变量间关系越紧密;越接近0,则关系越不紧密。

如何根据样本的相关系数推断总体相关关系?

(1)提出原假设,即两个总体间无显著的相关关系。

(2)构造检验统计量。

(3)计算检验统计量的观测值及对应的概率p值。

(4)根据计算结果,得出结论。若p值小于给定的显著性水平α,则拒绝原假设,两个总体之间存在显著的线性关系;反之,则接受原假设,两个总体之间无显著的线性关系。

双变量相关

分析过程

01 确认相关趋势

单击【图形→散点/点状】作散点图,初步观察,确认两个变量间有相关趋势。

02 选择分析变量

单击【分析→相关→双变量】,打开如图所示对话框,在左边的变量中选择两个以上变量送入【变量】框中。

d7d5c80b5b08eb74c6fd76af6e9c734e.png

03【相关系数】栏

【Pearson】:皮尔逊相关,只适用于正态分布的等间隔测度的变量。

【Kendall的tau-b】:肯德尔τ-b,调用Nonpar Corr非参数相关过程,考虑结点的影响,计算分类变量间的秩相关。

【Spearman】:斯皮尔曼相关,调用Nonpar Corr非参数相关过程计算斯皮尔曼秩相关系数。

04【显著性检验】栏

该栏检验针对的零假设是:总体中两个变量不相关。检验结果显示假设检验的概率。

【双侧检验】:当事先不知道相关方向(正相关还是负相关)时,选择此项。

【单侧检验】:当事先知道相关方向时,可选择此项。

05【标记显著性相关】

选择该项要求在输出结果中,相关系数右上方使用“*”表示显著性水平为5%,用“**”表示其显著性为1%。

06 选择项

单击【选项】打开如图所示对话框。

dc97edf8780ba4f76d718e8fac05d83c.png

【统计量】栏:只有选择了【Pearson】相关分析才可以选择这两个选项。

【缺失值】栏:选择【按对排除个案】,仅剔除正在参与计算的两个变量值都是缺失值的观测;选择【按列表排除个案】,剔除在主对话框【变量】栏中列出的变量带有缺失值的所有观测。

案例

目的探究salary(当前工资)与salbegin(起始工资)、雇员本人各方面条件的关系。

变量丨salary(当前工资)、salbegin(起始工资)、age(年龄)、jobtime(以月为单位的本单位工作时间)、prevexp(以月为单位的以前的工作经历)。

01

操作步骤

(1)单击【分析→相关→双变量】;

(2)将salary、salbegin、age、jobtime、prevexp送入【变量】框中;

(3)主对话框中,选择【Pearson】相关、【双侧检验】、【标记显著性相关】;

(4)【选项】框中,选择【均值和标准差】、【按对排除个案】;

(5)由于只需要变量salary与其他各变量的相关性,因此在运行程序语句中,将salary与其他变量之间增加“with”,以便使结果更加清晰。

02

结果分析

bb914f31f99e456d26f65de93a7de53d.png

由表可知,当前工资的均值高于起始工资,标准差大于起始工资,表明当前工资差别变大。

32864fee2c3eaf4af0b50e1be57a10c2.png

该表格表达较为繁琐。

在运行程序语句中增加“with”后输出如下所示表格。

12cb15db99816b4cf6db30c04a73375d.png

由表可知,“当前工资”与“起始工资”相关系数最大,为0.88,相关系数为0的概率小于0.001,因此“当前工资”与“起始工资”之间有高度正相关关系。“年龄”、“过去经验”及“受雇月数”与“当前工资”的相关系数值均较小,因此不能认为它们之间存在线性相关。

a0af528784b914731c8754d9c809557f.png

参考资料

卢纹岱,朱红兵.SPSS统计分析[M].北京:电子工业出版社,2015.
时立文.SPSS 19.0统计分析从入门到精通[M].北京:清华大学出版社,2012.

4f9240e446e84d7667c663a2d5e3c695.png

扫码关注

有趣的灵魂在等你

图文 张鑫璟

排版 张鑫璟

表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 深蓝海洋 设计师:CSDN官方博客 返回首页