Nature Communications: MOGONET使用图卷积网络集成多组学数据,允许患者分类和生物标志物识别 本文提出了一种新的多组学整合方法-多组学图卷积网络(Multi-Omics Graph cOnvolutional NETworks,MOGONET)用于生物医学分类。MOGONET联合探索组学特异性学习和跨组学相关学习,以实现有效的多组学数据分类。
Molecular Neurodegeneration: 东英吉利大学综述“微生物衍生代谢物是与年龄相关的认知能力下降和痴呆的危险因素 全球人口日益老龄化的一个后果是,全球范围内与年龄相关的认知能力下降和痴呆症的患病率日益上升。
Molecular Neurodegeneration: 东英吉利大学综述“微生物衍生代谢物是与年龄相关的认知能力下降和痴呆的危险因素 全球人口日益老龄化的一个后果是,全球范围内与年龄相关的认知能力下降和痴呆症的患病率日益上升。
Nature Machine Intelligence: 刘洋彧等利用神经常微分方程预测微生物代谢谱 表征微生物群落的代谢特征对于理解其生物学功能及其对宿主或环境的影响至关重要。直接测量这些特征的代谢组学实验是困难和昂贵的,然而,量化微生物群落的物种组成的测序方法已经发展得很好,而且成本相对较低。能够从微生物组成预测代谢组谱的计算方法可以节省代谢组谱实验所需的大量时间。然而,尽管已有了一些研究成果,我们仍然缺乏一种预测能力强、普遍适用性强、可解释性好的计算方法。
Nature Communications: 使用自然语言处理解密微生物基因功能 通讯作者为:以色列特拉维夫大学的David (Dudu) Burstein在测序数据量不断增加的时代,揭示未表征基因的功能是一项基本挑战。在这里,我们提出了一个使用自然语言处理(NLP)中采用的深度学习方法来应对这一挑战的概念。我们重新调整了NLP算法的用途,以基于其基因组背景下超过3.6亿个微生物基因的生物语料库为基础,对**“基因语义(gene semantics)”进行建模。
微生物差异丰度分析方法: MaAsLin 2 (Microbiome Multivariable Associations with Linear Models) 微生物多组学数据挖掘存在的问题: noisy, sparse(zero-inflated), high-dimensional, extremely non-normal, and often in the form of count or compositional measurements.MaAsLin 2(MicrobiomeMAL。
微生物差异丰度分析方法ANCOM-BC(Analysis of Compositions of Microbiomes with Bias Correction) 采样分数受两个因素的影响,即生态系统单位体积中的微生物负荷和相应样本的文库大小(例如,从受试者的粪便样本中测序的物种总丰度)。该公式在该领域取得了根本性的进步,因为与现有方法不同,它 (a) 提供具有适当 p 值的统计有效检验,(b) 为每个分类单元的差异丰度提供置信区间,© 控制错误发现速率 (FDR),(d) 保持足够的功率,并且 (e) 在计算上易于实现。在本文中,我们定义了“抽样分数”的概念,并证明了对微生物组数据进行 DA 分析的主要障碍是样本间抽样分数的差异所引入的偏差。
TreeExplainer原文精读: 用于树的可解释人工智能SHAP Tree 如果不近似,TreeExplainer调用的函数是, 其定义为https://github.com/slundberg/shap/blob/master/shap/cext/_cext.cc#L113。下面的代码引用了Python.hPyObjectreturns atypenumand aflagsstruct 是 C 语言中用来定义结构体类型的关键字。static 关键字可以用来修改变量或函数的存储类别。
监督聚类:如何使用SHAP Values进行更好的聚类分析 聚类分析(clustering)是识别人群中亚群的一种流行方法,但其结果往往难以解释和采取行动。监督聚类(*Supervised clustering*)利用Shapley Additive Explanations (SHAP)值,使用更结构化的数据表示来识别更好地分离的集群。
机器学习中解决不平衡分类的10种技术 作为一名数据科学家,二分类是最常见的分类模型之一。在解决这些问题时,一个常见的问题是类不平衡(class imbalance)。当一个类别的观察结果高于其他类别时,就会存在类别失衡。示例:检测欺诈性信用卡交易。
胶囊网络教程(Understanding Hinton’s Capsule Networks) Hinton和他的团队提出了一种训练这种由胶囊组成的网络的方法,并在一个简单的数据集上成功地训练了它,实现了最先进的性能。这是非常令人鼓舞的。尽管如此,还是存在挑战。当前的实现比其他现代深度学习模型慢得多。时间将证明胶囊网络是否可以快速有效地进行训练。此外,我们需要看看它们在更困难的数据集和不同的领域是否能很好地工作。
PyTorch系列教程(1):基础知识 _init____len__和。看看这个实现;FashionMNIST图像存储在目录img_dir中,它们的标签分别存储在CSV文件中。在接下来的部分中,我们将对这些函数中的每一个进行分解。__init__函数在实例化Dataset对象时运行一次。我们初始化包含图像、注释文件和这两个转换的目录(在下一节中详细介绍)。......__len__函数返回数据集中的样本数。函数从给定索引idx的数据集中加载并返回一个样本。根据索引,它识别图像在磁盘上的位置,使用read_image。
图神经网络系列教程(1): Supervised graph classification with Deep Graph CNN 这种差异可归因于下面列出的少数因素,-我们使用了不同的训练方案,即对数据进行90/10的单一分割,而不是[1]中使用的重复10倍交叉验证方案。我们的目标是训练一个机器学习模型,该模型使用数据的图形结构以及图形节点可用的任何信息,例如蛋白质中化合物的化学属性,以预测之前未看到的图形的正确标签;DGCNN架构是在[1]中提出的(参见[1]中的图5),使用了[2]中的图卷积层,但修改了传播规则(详见[1])。层,以通过图卷积层的堆栈为每个节点学习的表示作为输入,为每个给定的图生成表示(也称为嵌入)。
R中的主成分分析(Principal Component Analysis, PCA) 作为零售行业的数据科学家,假设您正试图从包含以下五个特征的数据集中了解是什么让客户满意:每月费用、年龄、性别、购买频率和产品评级。为了更好地分析并得出可操作的结论,我们需要了解数据集,或者至少将其可视化。人类无法轻易地可视化超过三个维度,因此可视化具有五个特征(维度)的客户数据并不简单。这就是主成分分析(, PCA)的用武之地。“但是,什么是主成分分析(它是一种统计方法,可用于分析高维数据并从中捕获最重要的信息。这是通过将原始数据转换到低维空间,同时将高度相关的变量整理在一起来完成的。
《机器学习实战:基于Scikit-Learn、Keras和TensorFlow》第1章 机器学习概览 课后习题 本章中,我们提及了机器学习中最重要的一些概念。第2章将会进行更深入的探讨,也会写更多代码。
图扩散卷积:Graph_Diffusion_Convolution GDC(Graph diffusion convolution,图扩散卷积)是一个预处理步骤,可以应用于任何图(graph),并与任何基于图(graph)的算法一起使用。我们进行了大量的实验(超过10万次的训练),以表明GDC在各种各样的模型和数据集上持续地提高了预测的准确性。但要记住,GDC基本上利用了大多数图(graph)中的同质性。**同质性是指相邻节点趋于相似的属性,即物以类聚**。因此,它并不适用于每个数据集和模型。