python量化交易策略实例_量化交易实例(含python常见函数的使用方法)

【实例简介】

【实例截图】

461d0216cf8e0be09e0f502ff88c546a.png

【核心代码】

2020-08-01量化交易code

├── 04-Python语言入门

│ ├── bin_data.npy

│ ├── cdv_data.csv

│ ├── foo.csv

│ ├── foo.xlsx

│ ├── numpy_basic.ipynb

│ ├── pandas_basic.ipynb

│ ├── python3.5_basic.ipynb

│ └── txt_data.txt

├── 05-传统机器学习初步

│ ├── Apriori_Association_Rule_Mining.ipynb

│ ├── SVR.py

│ ├── boston.csv

│ ├── decition_tree.py

│ ├── k-means.py

│ ├── linear_regression.py

│ ├── multi-variate_linear_regression

│ │ ├── BloodPressure.csv

│ │ ├── multi-variate_linear_regression.ipynb

│ │ └── readme.txt

│ ├── store_data.csv

│ ├── tree.png

│ └── xclara.csv

├── 06-深度学习初步

│ ├── AAPLnew.csv

│ ├── CNN_1timeseries_nstep.py

│ ├── CNN_ntimeseries_nstep.py

│ ├── INTCnew.csv

│ ├── LSTM_1timeseries_nstep.py

│ ├── LSTM_ntimeseries_nstep.py

│ ├── MLP_1timeseries_nstep.py

│ ├── MLP_ntimeseries_nstep.py

│ ├── MSFTnew.csv

│ ├── REF

│ │ ├── AAPLnew.csv

│ │ ├── MLP_1timeseries_1step.py

│ │ └── Utils_1timeseries_nstep.py

│ ├── Utils_1timeseries_nstep.py

│ ├── Utils_ntimeseries_nstep.py

│ ├── YHOOnew.csv

│ ├── __pycache__

│ │ ├── Utils_1timeseries_nstep.cpython-35.pyc

│ │ └── Utils_ntimeseries_nstep.cpython-35.pyc

│ └── model.h5

├── 07-统计分析初步

│ ├── AAPLnew.csv

│ ├── ARIMA_timeseries_predict3.ipynb

│ ├── data

│ │ └── TSLA_data.csv

│ └── hmm_stock_predict.ipynb

├── 08-数据准备

│ ├── 000001.SZ.csv

│ ├── 000001.SZ.new.csv

│ ├── AAPL.csv

│ ├── AAPLnew.csv

│ ├── FB.csv

│ ├── INTC.csv

│ ├── MSFT.csv

│ ├── PDD.csv

│ ├── YHOO.csv

│ ├── download_tushare1.py

│ ├── multiple_subplots.ipynb

│ ├── read_write_CSV.py

│ ├── read_write_tushare_CSV1.py

│ ├── showPrice1.py

│ ├── showPrice2.py

│ ├── showPrice3.py

│ └── symbols.txt

├── 09-基于规则的策略

│ ├── AAPLnew.csv

│ ├── MyRSIStrategy.py

│ └── SMACrossOver.py

├── 10-基于分类的交易策略(股票内)

│ ├── AAPLnew.csv

│ └── MyDTStrategy.py

├── 11-基于回归的交易策略(股票内)

│ ├── AAPLnew.csv

│ ├── MinMaxScalerExample.py

│ ├── MinMaxScalerExample_new.py

│ └── MyDTRStrategy.py

├── 12-基于回归的交易策略(股票间)

│ ├── AAPLnew.csv

│ ├── INTCnew.csv

│ ├── MSFTnew.csv

│ ├── MySVRStrategy.py

│ └── YHOOnew.csv

├── 13-基于统计分析的交易策略

│ ├── AAPLnew.csv

│ └── MyARIMAStrategy.py

├── 14-策略和算法参数的优化

│ ├── AAPLnew.csv

│ ├── INTCnew.csv

│ ├── MSFTnew.csv

│ ├── MyRSIStrategy.py

│ ├── Optimize_local.py

│ ├── Optimize_server.py

│ ├── Optimize_worker.py

│ ├── YHOOnew.csv

│ ├── __pycache__

│ │ └── MyRSIStrategy.cpython-35.pyc

│ ├── correlation.py

│ ├── correlation_lag.py

│ └── run_MyRSIStrategy.py

├── 15-其他算法与算法的组合

│ ├── AAPLnew.csv

│ ├── MyDT2KNNStrategy.py

│ ├── MyDTR2SVRStrategy.py

│ ├── MyDTR_SVR_GBRStrategy.py

│ └── MyDT_KNN_SVCStrategy.py

├── 16-基于深度学习模型的交易策略

│ ├── AAPLnew.csv

│ ├── MyMLPStrategy.py

│ ├── REF

│ │ ├── MLP_1timeseries_nstep.py

│ │ └── Utils_1timeseries_nstep.py

│ └── model.h5

└── 17-其它话题

├── AAPLnew.csv

├── INTCnew.csv

├── MSFTnew.csv

├── PY-Stock-Market-Clustering-master

│ ├── README.md

│ ├── SP_500_close_2015.csv

│ ├── SP_500_firms.csv

│ ├── Stock Market Analysis Parts 1&2- Stock Returns and Correlations.ipynb

│ ├── Stock Market Analysis Parts 3- Clustering.ipynb

│ └── Stock Market Analysis- TASK Description.pdf

├── YHOOnew.csv

├── arch

│ ├── AAPLnew.csv

│ ├── arch.ipynb

│ └── garch_test.ipynb

├── machine-learning-cluster-analysis-master

│ ├── 50.csv

│ ├── README.md

│ ├── SP_500_close_2015.csv

│ ├── data

│ │ └── stock_portfolio.csv

│ ├── features.csv

│ ├── groups.csv

│ ├── h_clustering.ipynb

│ ├── k-means clustering stocks for diverse portfolio.ipynb

│ ├── k_clustering.ipynb

│ ├── kmeans_clustering_stocks.ipynb

│ ├── stock_portfolio.csv

│ └── temp_clustering.py

├── portfolio_selection.ipynb

├── text_attention

│ ├── text.csv

│ └── text_attention.ipynb

└── timeseries_attention

├── mean_subtract_standardize.ipynb

├── model.h5

├── my_timeseries_attention.ipynb

├── timeseries_attention.ipynb

└── timeseries_attention_scale.ipynb

26 directories, 130 files

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值