【实例简介】
【实例截图】
【核心代码】
2020-08-01量化交易code
├── 04-Python语言入门
│ ├── bin_data.npy
│ ├── cdv_data.csv
│ ├── foo.csv
│ ├── foo.xlsx
│ ├── numpy_basic.ipynb
│ ├── pandas_basic.ipynb
│ ├── python3.5_basic.ipynb
│ └── txt_data.txt
├── 05-传统机器学习初步
│ ├── Apriori_Association_Rule_Mining.ipynb
│ ├── SVR.py
│ ├── boston.csv
│ ├── decition_tree.py
│ ├── k-means.py
│ ├── linear_regression.py
│ ├── multi-variate_linear_regression
│ │ ├── BloodPressure.csv
│ │ ├── multi-variate_linear_regression.ipynb
│ │ └── readme.txt
│ ├── store_data.csv
│ ├── tree.png
│ └── xclara.csv
├── 06-深度学习初步
│ ├── AAPLnew.csv
│ ├── CNN_1timeseries_nstep.py
│ ├── CNN_ntimeseries_nstep.py
│ ├── INTCnew.csv
│ ├── LSTM_1timeseries_nstep.py
│ ├── LSTM_ntimeseries_nstep.py
│ ├── MLP_1timeseries_nstep.py
│ ├── MLP_ntimeseries_nstep.py
│ ├── MSFTnew.csv
│ ├── REF
│ │ ├── AAPLnew.csv
│ │ ├── MLP_1timeseries_1step.py
│ │ └── Utils_1timeseries_nstep.py
│ ├── Utils_1timeseries_nstep.py
│ ├── Utils_ntimeseries_nstep.py
│ ├── YHOOnew.csv
│ ├── __pycache__
│ │ ├── Utils_1timeseries_nstep.cpython-35.pyc
│ │ └── Utils_ntimeseries_nstep.cpython-35.pyc
│ └── model.h5
├── 07-统计分析初步
│ ├── AAPLnew.csv
│ ├── ARIMA_timeseries_predict3.ipynb
│ ├── data
│ │ └── TSLA_data.csv
│ └── hmm_stock_predict.ipynb
├── 08-数据准备
│ ├── 000001.SZ.csv
│ ├── 000001.SZ.new.csv
│ ├── AAPL.csv
│ ├── AAPLnew.csv
│ ├── FB.csv
│ ├── INTC.csv
│ ├── MSFT.csv
│ ├── PDD.csv
│ ├── YHOO.csv
│ ├── download_tushare1.py
│ ├── multiple_subplots.ipynb
│ ├── read_write_CSV.py
│ ├── read_write_tushare_CSV1.py
│ ├── showPrice1.py
│ ├── showPrice2.py
│ ├── showPrice3.py
│ └── symbols.txt
├── 09-基于规则的策略
│ ├── AAPLnew.csv
│ ├── MyRSIStrategy.py
│ └── SMACrossOver.py
├── 10-基于分类的交易策略(股票内)
│ ├── AAPLnew.csv
│ └── MyDTStrategy.py
├── 11-基于回归的交易策略(股票内)
│ ├── AAPLnew.csv
│ ├── MinMaxScalerExample.py
│ ├── MinMaxScalerExample_new.py
│ └── MyDTRStrategy.py
├── 12-基于回归的交易策略(股票间)
│ ├── AAPLnew.csv
│ ├── INTCnew.csv
│ ├── MSFTnew.csv
│ ├── MySVRStrategy.py
│ └── YHOOnew.csv
├── 13-基于统计分析的交易策略
│ ├── AAPLnew.csv
│ └── MyARIMAStrategy.py
├── 14-策略和算法参数的优化
│ ├── AAPLnew.csv
│ ├── INTCnew.csv
│ ├── MSFTnew.csv
│ ├── MyRSIStrategy.py
│ ├── Optimize_local.py
│ ├── Optimize_server.py
│ ├── Optimize_worker.py
│ ├── YHOOnew.csv
│ ├── __pycache__
│ │ └── MyRSIStrategy.cpython-35.pyc
│ ├── correlation.py
│ ├── correlation_lag.py
│ └── run_MyRSIStrategy.py
├── 15-其他算法与算法的组合
│ ├── AAPLnew.csv
│ ├── MyDT2KNNStrategy.py
│ ├── MyDTR2SVRStrategy.py
│ ├── MyDTR_SVR_GBRStrategy.py
│ └── MyDT_KNN_SVCStrategy.py
├── 16-基于深度学习模型的交易策略
│ ├── AAPLnew.csv
│ ├── MyMLPStrategy.py
│ ├── REF
│ │ ├── MLP_1timeseries_nstep.py
│ │ └── Utils_1timeseries_nstep.py
│ └── model.h5
└── 17-其它话题
├── AAPLnew.csv
├── INTCnew.csv
├── MSFTnew.csv
├── PY-Stock-Market-Clustering-master
│ ├── README.md
│ ├── SP_500_close_2015.csv
│ ├── SP_500_firms.csv
│ ├── Stock Market Analysis Parts 1&2- Stock Returns and Correlations.ipynb
│ ├── Stock Market Analysis Parts 3- Clustering.ipynb
│ └── Stock Market Analysis- TASK Description.pdf
├── YHOOnew.csv
├── arch
│ ├── AAPLnew.csv
│ ├── arch.ipynb
│ └── garch_test.ipynb
├── machine-learning-cluster-analysis-master
│ ├── 50.csv
│ ├── README.md
│ ├── SP_500_close_2015.csv
│ ├── data
│ │ └── stock_portfolio.csv
│ ├── features.csv
│ ├── groups.csv
│ ├── h_clustering.ipynb
│ ├── k-means clustering stocks for diverse portfolio.ipynb
│ ├── k_clustering.ipynb
│ ├── kmeans_clustering_stocks.ipynb
│ ├── stock_portfolio.csv
│ └── temp_clustering.py
├── portfolio_selection.ipynb
├── text_attention
│ ├── text.csv
│ └── text_attention.ipynb
└── timeseries_attention
├── mean_subtract_standardize.ipynb
├── model.h5
├── my_timeseries_attention.ipynb
├── timeseries_attention.ipynb
└── timeseries_attention_scale.ipynb
26 directories, 130 files