【大数据】—量化交易实战案例(海龟交易策略)

声明:股市有风险,投资需谨慎!本人没有系统学过金融知识,对股票有敬畏之心没有踏入其大门,今天用另外一种方法模拟炒股,后面的模拟的实战全部用同样的数据,最后比较哪种方法赚的钱多。

海龟交易策略(Turtle Trading)

概念

海龟交易策略是一种经典的量化交易策略,由美国交易员理查德·丹尼斯(Richard Dennis)在20世纪80年代开发。该策略使用唐安奇通道(Donchian channel)来跟踪趋势产生买卖信号,利用ATR(真实波幅均值)分批加仓或者减仓,并且动态进行止盈和止损。唐奇安通道由周期内的最高价和最低价来显示市场价格的波动性,当价格冲破该通道的上轨道时,就是可能的买入信号;反之,冲破下轨时就是可能的卖出信号。

风控

海龟交易策略包括了仓位的基本单位N的定义,这个单位确保了预期价值波动与总净资产的1%对应,从而控制风险。此外,策略还涵盖了入场和止损规则,一旦确定了市场的趋势方向,海龟交易法采取突破策略进行入场,并设定严格的止损规则,一旦市场反向突破止损位,就会平仓离场,以限制亏损。

优势

海龟交易策略的优势在于其基于趋势跟随,采用趋势跟踪策略,充分利用市场趋势的力量,并且具有严格的风险管理,设定了明确的止损规则。

挑战

需要注意的是这种策略需要交易者具备耐心和纪律,因为它可能需要持有较长的时间,并且在市场出现短期反弹或调整时也不能轻易离场。

读入数据

数据依旧和前几篇量化交易数据一致:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
plt.rcParams ['font.sans-serif'] ='SimHei'      #显示中文
plt.rcParams ['axes.unicode_minus']=False       #显示负号
zgpa = pd.read_csv('history_k_data.csv')
zgpa = zgpa.set_index('date')
zgpa.head()

展示前五行数据:
在这里插入图片描述

#创建一个名为turtle的数据表,使用原始数据表的日期序号
turtle = pd.DataFrame(index = zgpa.index)
#设置唐奇安通道的上沿为前5天股价的最高点
turtle['high'] = zgpa['close'].shift(1).rolling(5).max()
#设置唐奇安通道的下沿为过去5天的最低点
turtle['low'] = zgpa['close'].shift(1).rolling(5).min()
#当股价突破上沿时,发出买入信号
turtle['buy'] = zgpa['close'] > turtle['high']
#当股价突破下沿时,发出卖出信号
turtle['sell'] = zgpa['close'] < turtle['low']
#检查信号创建情况
turtle.tail()

在这里插入图片描述
新建一个数据表,date列和原表一致:

  • high列为唐奇安通道的上沿前5天股价的最高点。
  • low列为唐奇安通道的下沿过去5天股价的最低点。
  • buy列当股价突破上沿时,发出买入信号True。
  • sell列当股价突破下沿时,发出卖出信号True。
#初始的订单状态为0
turtle['orders']=0
#初始的仓位为0
position = 0
#设置循环,遍历turtle数据表
for k in range(len(turtle)):
    #当买入信号为True且仓位为0时下单买入1手
    if turtle.buy.iloc[k] and position ==0:
        #修改对应的orders值为1
        turtle.orders.values[k] = 1
        #仓位也增加1手
        position = 1
    #而当卖出信号为True且有持仓时卖出1手
    elif turtle.sell.iloc[k] and position > 0:
        #orders的值修改为-1
        turtle.orders.values[k] = -1
        #仓位相应清零
        position = 0   
#检查是否成功
turtle.tail(15)

显示表格的后15行:
在这里插入图片描述上表中orders列为初始订单状态,初始值为0.
设置初始的仓位为0并赋值给变量position。
上面代码写了一个循环,遍历上表每一行,当buy列(买入信号)为True时,orders列对应行赋值1,position(仓位)加1;当sell列(卖出信号)为True且有持仓时卖出1手,position(仓位)清零。

数据可视化:

#创建10*5的画布
plt.figure(figsize=(10,5))
#绘制股价的折线图
plt.plot(zgpa['close'],lw=2)
#绘制唐奇安通道上沿
plt.plot(turtle['high'],lw=2, ls='--',c='r')
#绘制唐奇安通道下沿
plt.plot(turtle['low'],lw=2,ls='--',c='g')
#标出买入订单,用正三角标记
plt.scatter(turtle.loc[turtle.orders==1].index,
           zgpa['close'][turtle.orders==1],
           marker='^',s=80,color='r',label='Buy')
#标出卖出订单,用倒三角标记
plt.scatter(turtle.loc[turtle.orders==-1].index,
           zgpa['close'][turtle.orders==-1],
           marker='v',s=80,color='g',label='Sell')
#添加网格、图注并显示
plt.legend()
plt.xticks([0,12,24,36,48,60,72,84,96,108])
plt.grid()
plt.show()

在这里插入图片描述上图绘制出了唐奇安通道的上下沿,其中红色三角形标记买入信号,绿色三角形标记卖出信号。

#再次给小瓦2万块初始资金
initial_cash = 20000
#创建新的数据表,序号和turtle数据表一致
positions = pd.DataFrame(index=turtle.index).fillna(0.0)
#每次交易为1手,即100股,仓位即买单和卖单的累积加和
positions['stock'] = 100 * turtle['orders'].cumsum()
#创建投资组合数据表
portfolio = positions.multiply(zgpa['close'], axis=0)
#持仓市值为持仓股票数乘以股价
portfolio['holding_values'] = (positions.multiply(zgpa['close'], axis=0))
#计算出仓位的变化
#剩余的现金是初始资金减去仓位变化产生的现金流累计加和
portfolio['cash'] = initial_cash - (positions.diff().multiply(zgpa['close'], axis=0)).cumsum()
#总资产即为持仓股票市值加剩余现金
portfolio['total'] = portfolio['cash'] + portfolio['holding_values']
portfolio.tail(13)

在这里插入图片描述显示后13行数据,开始进行回测炒股,初始资金一如既往的20000元。
stock列为仓位即买单和卖单的累加和,每次交易为1手,即100股。
holding_values列为持仓市值为持仓股票数乘以股价。
cash列为剩余的现金,由初始资金减去仓位变化产生的现金流累加和。
total列为总资产即为持仓股票市值加剩余现金。
可以看到,我发了3篇量化交易的实战案例,炒股还没有亏过本,本次赚了378元。(再次声明我不懂股票,只是运用了量化交易策略进行模拟炒股。)

plt.figure(figsize=(10,5))
plt.plot(portfolio['total'])
plt.plot(portfolio['holding_values'],'--')
plt.grid()
plt.legend()
plt.xticks([0,12,24,36,48,60,72,84,96,108])
plt.show()

数据可视化:
在这里插入图片描述
创作不易,点赞、关注、评论是我创作的动力!

好的,这里是一个简单的股票量化交易子。请注意,这只是一个简单的示,实际的交易策略需要更加复杂的模型和算法来开发。 首先,我们需要导入一些必要的库: ``` import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import datetime as dt import yfinance as yf ``` 然后,我们需要获取股票数据并对其进行处理: ``` start = dt.datetime(2015,1,1) end = dt.datetime(2021,1,1) data = yf.download('AAPL', start, end) data['SMA_50'] = data['Adj Close'].rolling(window=50).mean() data['SMA_200'] = data['Adj Close'].rolling(window=200).mean() data.dropna(inplace=True) data['Signal'] = np.where(data['SMA_50'] > data['SMA_200'], 1, -1) data['Position'] = data['Signal'].shift(1) data.dropna(inplace=True) ``` 在这个子中,我们使用了 AAPL 股票的历史数据,并计算了 50 天和 200 天的移动平均线。然后,我们使用这些移动平均线来生成交易信号。如果 50 天移动平均线大于 200 天移动平均线,则发出买入信号(1),否则发出卖出信号(-1)。 接下来,我们需要计算每天的收益率,并计算出我们的策略在该时间段内的累计收益率: ``` data['Returns'] = np.log(data['Adj Close'] / data['Adj Close'].shift(1)) data['Strategy'] = data['Position'] * data['Returns'] data[['Returns', 'Strategy']].cumsum().apply(np.exp).plot(figsize=(10, 6)) plt.show() ``` 最后,我们可以绘制出我们的策略和股票价格的收益曲线,以便比较它们的表现。 这只是一个简单的示,实际的交易策略需要更加复杂的模型和算法来开发。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

花花 Show Python

你的打赏会让我有创作的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值