上的介质簇的结构不正确_代数簇的德拉姆上同调

本文讨论代数簇的(代数)德拉姆上同调,为了简单起见,本文只考虑仿射代数簇的情形,尽管本文很多结论对更一般的代数簇(概型)仍然是正确的.

仿射代数簇的定义

是一个域,
是一个有限生成
-代数, 称
仿射代数簇. 具体来说,若
,那么

直观地说,仿射代数簇

无非是仿射空间
中的一组多项式的公共零点集
.

代数德拉姆上同调

上的代数,仿射代数簇
Kahler微分模是指一个
-模
,它是由所有
生成的自由
-模模掉如下关系:
  • 常数求导为零:对
    .
  • 加性:对
    .
  • 莱布尼茨法则:对
    .

得到的

-模,它配备一个
导子

满足如下泛性:对任意的

-线性导子
(
-模), 存在唯一的
-模同态
使得
.

例1:微分摸的计算

,那么
就是自由
-模
模掉关系
, i.e.


-
形式微分模是指
,具体来说,
-模
模掉由形如元素
(某两个下标相等) 生成的子模得到的商模. 把
对应的陪集记为
. 如果
是光滑簇,
是秩为
的局部自由
-模,此时
是秩为
的局部自由
-模.

导子

可通过如下方式延拓为
-模同态

直接验证可知为

,于是得到复形
, 称之为仿射簇
德拉姆复形
:

并把这个复形的同调群称为

代数德拉姆上同调, i.e.

有时候简记为

.

例2:特征零的域上的仿射空间的代数德拉姆上同调

,则
; 对
,
的每个元素
可写成有限和

的形式,其中

. 若
,则
;如果
,则
.

让我们在这个例子验证一下

:对
,

由于

以及
, 所以
. 而对形式
, 有

由下面将要证明的代数庞加莱引理可知若

, 那么
和对
均有
.

代数庞加莱引理:

特征为零的域,
, 则下列
-模的序列是正合的:

证明:对维数

作归纳. 对
是显然的;假设命题对维数小于
为真,要证对维数
为真.

现设

满足
,要找某形式
使得
. 首先把
以涉不涉及
分成两部分,也就是记

其中

均与
无关. 接着定义

这里“积分”

是指形式地替代
中的
(这是因为
故包含有理数域,所以总是可以做到的!) . 那么,
以及

这里

不涉及
. 假如能找到某个
使得
,则
就满足要求,而
不涉及
,这表明可以把问题约化为
不涉及
的情形. 于是可以记

由于

, 故对所有
均有
, 因此所有多项式
也不涉及
,这表明可以用归纳假设,证毕.

例3:正特征的域上的仿射空间的代数德拉姆上同调(万恶之源)

如果域

的特征为
,那么庞加莱引理不再成立! 例如考虑
,
, 则序列

不是正合的. 设

是被
整除的正整数,则
不是边界,这是因为
! 这也表明
不是有限维
-线性空间!

例4:椭圆曲线的代数德拉姆上同调

,
为椭圆曲线,其中
没有重根,则

435b2a50fb0441d1acf0712830a0f903.png

b7bf4b8653c12242d8cf9d4c6eebb607.png
椭圆曲线

a54ddb82f0ee5d58c8edc6f43619f52e.png

3e6502c814ca56e559e946c1ea26d9d9.png

下面定理表明在特征零的域上的光滑代数簇的情形,代数德拉姆上同调给出“正确”的德拉姆上同调!

定理 1(Grothendieck):

上的光滑代数, i.e.
是光滑代数
-簇, 那么有典范同构

,

其中

是代数簇
相应的复解析流形
的解析德拉姆上同调,
的奇异上同调.

证明:见 A. Grohendieck. On the derham cohomology of algebraic varieties. Publications, mathematiques de l'I.H.E.S, 29, 1966. 尽管这个结论对一般的光滑代数簇都是对的,但是最难的一步恰好是仿射的情形!

下面的例子表明上述定理在奇异的代数簇情形不再正确.

例5:奇异曲线代数德拉姆上同调

是特征为零的域,
,则
; 对
. 但是当

7639f07e6bfe1b134b3ae74e3e126004.png
原点处奇异

e7fab357e71c013c3678d9f0dec6e950.png

6929803138546329c56b87a9957035b9.png

45e206b97ee34ac58258700569d83184.png

总结一下:

  • 当域
    的特征为零,且
    是光滑代数簇,那么它的代数德拉姆上同调
    给出”正确“的德拉姆上同调, i.e.
    , 其中
    是代数簇
    相应的复解析流形
    的解析德拉姆上同调.
  • 问题1:当域
    的特征为零,且
    是奇异代数簇,则代数德拉姆上同调不再给出“正确”的德拉姆上同调,见例5.
  • 问题2:当域
    为正特征,那么情况非常糟糕,就连仿射直线的
    维代数德拉姆上同调都是无限维的!见例3.

那么如何修正上述问题1和2?

问题1的回答——奇异代数簇的德拉姆上同调

是奇异代数
-簇. Deligne 说,我们可以这样干:把
是闭嵌入,
是光滑代数簇 (例如取
为仿射空间) ,如下图所示

8f73b24511cc6769eaf5899b879210ba.png

沿着
作完备化 (
formal completion along
)}. 换句话说,设
是闭嵌入
的定义理想层,令
-阶加厚, i.e. 理想层
定义的闭子簇. 于是我们有一个序列

它们作为拓扑空间是同一个东西,每个

上有一个德拉姆复形
. 定义

定理 2(Deligne):在差一个典范同构的意义下,上同调

不依赖于闭嵌入
. 此外,还有典范同构
.

证明:见 Hartshorne, Robin. On the De Rham cohomology of algebraic varieties. Inst. Hautes ´Etudes Sci. Publ. Math. No. 45 (1975), 5–99.

问题2的回答

问题2的回答将我们引向波澜壮阔代数簇的

进上同调理论!

a58cffcc0771d47367559545a6c3d978.png
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值