python制作图片数据集 h5py_Python数据存储之 h5py详解

本文介绍了Python数据存储的方式,重点讲解了h5py包的使用,包括HDF5文件的基本数据对象和优势。通过示例展示了如何利用h5py创建、存储和读取数据集,强调其速度快、压缩效率高的特点。
摘要由CSDN通过智能技术生成

1、Python数据存储(压缩)

(1)numpy.save , numpy.savez , scipy.io.savemat

numpy和scipy内建的数据存储方式。

(2)cPickle + gzip

cPickle是pickle内建的数据存储方式,gzip是常用的文件压缩模块。

(3)h5py

h5py是对HDF5文件格式进行读写的python包,关于h5py更多介绍与安装,参考官方网站

关于HDF5,参考官方网站。:

一个HDF5文件就是一个由两种基本数据对象(groups and datasets)存放多种科学数据的容器:

HDF5 dataset: 数据元素的一个多维数组以及支持元数据(metadata); HDF5 group: 包含0个或多个HDF5对象以及支持元数据(metadata)的一个群组结构;

总之,dataset是类似于数组的数据集,而group是类似文件夹一样的容器,存放dataset和其他group;group和dataset在h5py中的使用有点类似于词典和Numpy中数组的用法。

h5py的优势:速度快、压缩效率高,总之,numpy.savez和cPickle存储work或不work的都可以试一试h5py!

2、h5py读取和存储数据示例

import h5py

X= np.random.rand(100, 1000, 1000).astype('float32')

y = np.random.rand(1, 1000, 1000).astype('float32')

# Create a new file

f = h5py.File('data.h5', 'w')

f.create_dataset('X_train', data=X)

f.create_dataset('y_train', data=y)

f.close()

# Load hdf5 dataset

f = h5py.File('data.h5', 'r')

X = f['X_train']

Y = f['y_train']

f.close()

详细使用方法,参考官网。

以上这篇Python数据存储之 h5py详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

本文标题: Python数据存储之 h5py详解

本文地址: http://www.cppcns.com/jiaoben/python/295627.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值