matlab二次函数拟合求函数_插值与拟合

本文深入探讨了Matlab中的一维插值方法,包括拉格朗日插值、分段线性插值和三次样条插值,并分析了各自的优缺点。此外,还介绍了二维插值和线性、非线性拟合的原理与应用,以及在Matlab中的实现技巧。
摘要由CSDN通过智能技术生成

一、一维插值

拉格朗日插值(高次多项式插值):其插值函数在整个区间上是一个解析表达式,便于再次开发利用;曲线光滑;误差估计有表达式;收敛性不能保证(振荡现象)。用于理论分析,实际意义不大。

分段线性和三次样条插值(低次多项式插值):曲线不光滑(三次样条插值已大有改进);误差估计较难(对三次样条插值); 收敛性有保证。简单实用,应用广泛。

18e637838a73bdd1abd7b1ddac8cb3f1.png

节点可视为由y = g( x)产生,函数g表达式复杂,或无解析表达式,或未知。

构造一个(相对简单的)函数y=f(x),通过全部节点, 即f (xj) =yj ( j =0,1,....,n)

再用f(x)计算插值,即y∗=f(x∗)

(1) 拉格朗日(Lagrange)插值

已知函数f(x)在n+1个点x0,x1,…,xn处的函数值为 y0,y1,…,yn 。求一n次多项式函数Pn(x),使其满足:Pn(xi)=yi,i=0,1,…,n.

解决此问题的拉格朗日插值多项式公式如下

a940d78b84ce2107666e51e6e7635175.png

其中Li(x) 为n次多项式:

7b92a9150d7b493f00071b9ee0b01961.png

称为拉格朗日插值基函数。

特别地: 两点一次(线性)插值多项式:

9e5673572cf4516ce9cbef3daea0021d.png

三点二次(抛物)插值多项式:

fca3dcc9e351d637fb7505ca684476f0.png

直接验证可知,Ln( x) )满足插值条件Ln(xi)=yi,i=0,1,…,n.

N越大,误差不一定越小。

通过考察g(x)=

e803a5f6223b2fee581c24eec7192bc9.png

,-5≤x≤5

27294d9e14c26d0d2728b27f092c0e76.png

采用拉格朗日多项式插值:选取不同插值节点个数n+1, 其中n为插值多项式 的次数,当n分别取2, 4,6,8,10时,绘出插值结果如上图.

这种振荡现象叫Runge现象。

(2)分段线性插值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值