python ransac 拟合平面_[Matlab] RANSAC平面拟合例子

本文详细介绍了RANSAC算法的工作原理,包括输入数据、随机抽样次数、距离阈值和数量阈值的选择,以及程序流程中的模型构建、距离判断和最佳模型选择。通过实例演示了如何使用RANSAC方法拟合平面并处理异常数据。
摘要由CSDN通过智能技术生成

RANSAC原理

输入:①数据 ②抽样次数N ③距离阈值t ④数量阈值T

输出:最终估计的模型

程序流程:

1. data :数据

2. 取样本 :确定模型参数p所需要的最小数据数n,随机取n个数据作为一个样本J

3. 建模型:根据样本J建立模型Mp(J)。

4. 判断距离:根据模型Mp(J)判断所有数据点到模型的距离。

5. 记录:记录 距离小于t的个数total 和 距离小于t的点的索引。

6. 判断: 若total>数量阈值T :则用距离小于t的点重新估计模型 重复3-5一次。

若total

7. 记录最大total和此时的模型作为最佳模型。

8. 循环N次。

9.输出

函数ransac_fitplane

function [a,b,c,d]=ransac_fitplane(data,N,t,T)

figure;plot3(data(1,:),data(2,:),data(3,:),'o');hold on; % 显示数据

iter = N; %抽样次数N

number = size(data,2); % 总数

maxNum=0; %符合拟合模型的数据的个数

for i=1:iter %循环次数

sampleidx = randperm(number); sampleidx =sampleidx(1,1:3);

sample = data(:,sampleidx); %取样本

[a1,a2,a3,a4]=get_nice_plane(sample);%拟合直线方程 z=ax+by+c

plane = [-a1/a3,-a2/a3,-1,-a4/a3];%建模型

mask=abs(plane*[data; ones(1,size(data,2))]); %求每个数据到拟合平面的距离

total=sum(mask

index= mask

if total>T

nsample=data(:,index);

[a1,a2,a3,a4]=get_nice_plane(nsample);

plane = [-a1/a3,-a2/a3,-1,-a4/a3]; %z=ax+by+c

mask=abs(plane*[data; ones(1,size(data,2))]);

total=sum(mask

end;

if total>maxNum %记录最大total

maxNum=total;

bestplane=plane;%最好的拟合平面

bestindex=index;

bestplane2=[a1,a2,a3,a4];

end

end

%显示符合最佳拟合的数据

maxNum %最大一致集

avgerror=abs(bestplane*[data; ones(1,size(data,2))]);

avgerror=sum(avgerror(find(avgerror

a=bestplane2(1);b=bestplane2(2);c=bestplane2(3);d=bestplane2(4);

% 图形绘制

temp1=data(1,bestindex);

temp2=data(2,bestindex);

xfit = min(temp1):0.2:max(temp1);

yfit = min(temp2):0.2:max(temp2);

[XFIT,YFIT]= meshgrid (xfit,yfit);

ZFIT = bestplane(1)*XFIT+bestplane(2)*YFIT+bestplane(4);

mesh(XFIT,YFIT,ZFIT);grid on;

xlabel('X');

ylabel('Y');

end

函数get_nice_plane

function [a,b,c,d]=get_nice_plane(data)

planeData=data';

% 协方差矩阵的SVD变换中,最小奇异值对应的奇异向量就是平面的方向

xyz0=mean(planeData,1);

centeredPlane=bsxfun(@minus,planeData,xyz0);

[~,~,V]=svd(centeredPlane);

a=V(1,3);

b=V(2,3);

c=V(3,3);

d=-dot([a b c],xyz0);

end

主程序

mu=[0 0 0];

S=[2 0 4;0 4 0;4 0 8];

data1=mvnrnd(mu,S,400);

%外点

mu=[2 2 2];

S=[8 1 4;1 8 2;4 2 8];

data2=mvnrnd(mu,S,500);

data=[data1',data2'];%% 相当于原始数据

[a,b,c,d]=ransac_fitplane(data,3000,0.5,300)

实验结果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值