环境准备:
hadoop版本:2.6.5
spark版本:2.3.0
hive版本:1.2.2
master主机:192.168.100.201
slave1主机:192.168.100.201
pom.xml依赖如下:
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
4.0.0
com.spark
spark_practice
1.0-SNAPSHOT
UTF-8
1.8
1.8
2.3.0
junit
junit
4.11
test
org.apache.spark
spark-core_2.11
${spark.core.version}
org.apache.spark
spark-sql_2.11
${spark.core.version}
mysql
mysql-connector-java
5.1.38
org.apache.spark
spark-hive_2.11
2.3.0
注意:一定要将hive-site.xml配置文件放到工程resources目录下
hive-site.xml配置如下:
hive.metastore.uris
thrift://192.168.100.201:9083
hive.server2.thrift.port
10000
javax.jdo.option.ConnectionURL
jdbc:mysql://node01:3306/hive?createDatabaseIfNotExist=true
javax.jdo.option.ConnectionDriverName
com.mysql.jdbc.Driver
javax.jdo.option.ConnectionUserName
root
javax.jdo.option.ConnectionPassword
123456
hive.zookeeper.quorum
node01,node02,node03
hbase.zookeeper.quorum
node01,node02,node03
hive.metastore.warehouse.dir
/user/hive/warehouse
fs.defaultFS
hdfs://192.168.100.201:9000
hive.metastore.schema.verification
false
datanucleus.autoCreateSchema
true
datanucleus.autoStartMechanism
checked
主类代码:
import org.apache.spark.sql.SparkSession
object SparksqlTest2 {
def main(args: Array[String]): Unit = {
val spark: SparkSession = SparkSession
.builder
.master("local[*]")
.appName("Java Spark Hive Example")
.enableHiveSupport
.getOrCreate
spark.sql("show databases").show()
spark.sql("show tables").show()
spark.sql("select * from person").show()
spark.stop()
}
}
前提:数据库访问的是default,表person中有三条数据。
测试前先确保hadoop集群正常启动,然后需要启动hive的metastore服务。
./bin/hive --service metastore
运行,结果如下:
如果报错:
Exception in thread "main" org.apache.spark.sql.AnalysisException: java.lang.RuntimeException: java.io.IOException: (null) entry in command string: null chmod 0700 C:\Users\dell\AppData\Local\Temp\c530fb25-b267-4dd2-b24d-741727a6fbf3_resources;
at org.apache.spark.sql.hive.HiveExternalCatalog.withClient(HiveExternalCatalog.scala:106)
at org.apache.spark.sql.hive.HiveExternalCatalog.databaseExists(HiveExternalCatalog.scala:194)
at org.apache.spark.sql.internal.SharedState.externalCatalog$lzycompute(SharedState.scala:114)
at org.apache.spark.sql.internal.SharedState.externalCatalog(SharedState.scala:102)
at org.apache.spark.sql.hive.HiveSessionStateBuilder.externalCatalog(HiveSessionStateBuilder.scala:39)
at org.apache.spark.sql.hive.HiveSessionStateBuilder.catalog$lzycompute(HiveSessionStateBuilder.scala:54)
at org.apache.spark.sql.hive.HiveSessionStateBuilder.catalog(HiveSessionStateBuilder.scala:52)
at org.apache.spark.sql.hive.HiveSessionStateBuilder$$anon$1.(HiveSessionStateBuilder.scala:69)
at org.apache.spark.sql.hive.HiveSessionStateBuilder.analyzer(HiveSessionStateBuilder.scala:69)
at org.apache.spark.sql.internal.BaseSessionStateBuilder$$anonfun$build$2.apply(BaseSessionStateBuilder.scala:293)
at org.apache.spark.sql.internal.BaseSessionStateBuilder$$anonfun$build$2.apply(BaseSessionStateBuilder.scala:293)
at org.apache.spark.sql.internal.SessionState.analyzer$lzycompute(SessionState.scala:79)
at org.apache.spark.sql.internal.SessionState.analyzer(SessionState.scala:79)
at org.apache.spark.sql.execution.QueryExecution.analyzed$lzycompute(QueryExecution.scala:57)
at org.apache.spark.sql.execution.QueryExecution.analyzed(QueryExecution.scala:55)
at org.apache.spark.sql.execution.QueryExecution.assertAnalyzed(QueryExecution.scala:47)
at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:74)
at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:638)
at com.tongfang.learn.spark.hive.HiveTest.main(HiveTest.java:15)
解决:
1.下载hadoop windows binary包,链接:https://github.com/steveloughran/winutils
2.在启动类的运行参数中设置环境变量,HADOOP_HOME=D:\winutils\hadoop-2.6.4,后面是hadoop windows 二进制包的目录。
到此这篇关于SparkSQL读取hive数据本地idea运行的方法详解的文章就介绍到这了,更多相关SparkSQL读取hive数据本地idea运行内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!