Python中滑动平均算法(Moving Average)方案:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import numpy as np
# 等同于MATLAB中的smooth函数,但是平滑窗口必须为奇数。
# yy = smooth(y) smooths the data in the column vector y ..
# The first few elements of yy are given by
# yy(1) = y(1)
# yy(2) = (y(1) + y(2) + y(3))/3
# yy(3) = (y(1) + y(2) + y(3) + y(4) + y(5))/5
# yy(4) = (y(2) + y(3) + y(4) + y(5) + y(6))/5
# ...
def smooth(a,WSZ):
# a:原始数据,NumPy 1-D array containing the data to be smoothed
# 必须是1-D的,如果不是,请使用 np.ravel()或者np.squeeze()转化
# WSZ: smoothing window size needs, which must be odd number,
# as in the original MATLAB implementation
out0 = np.convolve(a,np.ones(WSZ,dtype=int),"valid")/WSZ
r = np.arange(1,WSZ-1,2)
start = np.cumsum(a[:WSZ-1])[::2]/r
stop = (np.cumsum(a[:-WSZ:-1])[::2]/r)[::-1]
return np.concatenate(( start , out0, stop ))
# another one,边缘处理的
Python滑动平均算法实现

本文介绍了Python中实现滑动平均(Moving Average)的三种方法,包括numpy的convolve函数处理,以及两种自定义实现,分别考虑了边缘处理和效率问题。这些方法适用于数据平滑和分析。
最低0.47元/天 解锁文章
1万+

被折叠的 条评论
为什么被折叠?



