最短路算法的证明_图论--SPFA算法(单源最短路)

SPFA 算法详解(最短路径)

算法优点:

1.时间复杂度比普通的Dijkstra和Ford低。

2.能够计算负权图问题。

3.能够判断是否有负环 (即:每跑一圈,路径会减小,所以会一直循环跑下去)。

算法思想:

我们用数组记录每个结点的最短路径估计值,用邻接表来存储图G。

我们采取的方法是动态逼近法:

1.设立一个先进先出的队列用来保存待优化的结点。

2.优化时每次取出队首结点u,并且用u点当前的最短路径估计值对离开u点所指向的结点v进行松弛操作,如果v点的最短路径估计值有所调整,且v点不在当前的队列中,就将v点放入队尾。

3.这样不断从队列中取出结点来进行松弛操作,直至队列空为止

期望的时间复杂度O(ke), 其中k为所有顶点进队的平均次数,可以证明k一般小于等于2。

实现方法:

1.存入图。可以使用链式前向星或者voctor。

2.开一个队列,先将开始的节点放入。

3.每次从队列中取出一个节点X,遍历与X相通的Y节点,查询比对 Y的长度 和 X的长度+ X与Y的长度

如果X的长度+ X与Y的长度> Y的长度,说明需要更新操作。

1).存入最短路。

2).由于改变了原有的长度,所以需要往后更新,与这个节点相连的最短路。(即:判断下是否在队列,在就不用重复,不在就加入队列,等待更新)。

3).在这期间可以记录这个节点的进队次数,判断是否存在负环。

4.直到队空。

判断有无负环:如果某个点进入队列的次数超过N次则存在负环

模拟过程:

首先建立起始点a到其余各点的最短路径表格

首先源点a入队,当队列非空时:

1、队首元素(a)出队,对以a为起始点的所有边的终点依次进行松弛操作(此处有b,c,d三个点),此时路径表格状态为:

在松弛时三个点的最短路径估值变小了,而这些点队列中都没有出现,这些点需要入队,此时,队列中新入队了三个结点b,c,d

队首元素b点出队,对以b为起始点的所有边的终点依次进行松弛操作(此处只有e点),此时路径表格状态为:

在最短路径表中,e的最短路径估值也变小了,e在队列中不存在,因此e也要入队,此时队列中的元素为c,d,e

队首元素c点出队,对以c为起始点的所有边的终点依次进行松弛操作(此处有e,f两个点),此时路径表格状态为:

在最短路径表中,e,f的最短路径估值变小了,e在队列中存在,f不存在。因此e不用入队了,f要入队,此时队列中的元素为d,e,f

队首元素d点出队,对以d为起始点的所有边的终点依次进行松弛操作(此处只有g这个点),此时路径表格状态为:

在最短路径表中,g的最短路径估值没有变小(松弛不成功),没有新结点入队,队列中元素为f,g

队首元素f点出队,对以f为起始点的所有边的终点依次进行松弛操作(此处有d,e,g三个点),此时路径表格状态为:

在最短路径表中,e,g的最短路径估值又变小,队列中无e点,e入队,队列中存在g这个点,g不用入队,此时队列中元素为g,e

队首元素g点出队,对以g为起始点的所有边的终点依次进行松弛操作(此处只有b点),此时路径表格状态为:

在最短路径表中,b的最短路径估值又变小,队列中无b点,b入队,此时队列中元素为e,b队首元素e点出队,对以e为起始点的所有边的终点依次进行松弛操作(此处只有g这个点),此时路径表格状态为:

在最短路径表中,g的最短路径估值没变化(松弛不成功),此时队列中元素为b

队首元素b点出队,对以b为起始点的所有边的终点依次进行松弛操作(此处只有e这个点),此时路径表格状态为:

在最短路径表中,e的最短路径估值没变化(松弛不成功),此时队列为空了

最终a到g的最短路径为14

例题:

题意:给出几个城市及其连通情况,然后给出多个出发点,和多个终点。求从任意起点出发到任意个终点,最短的那条路。

思路: 求出全部起点的最短路,遍历终点一遍,找最短的路。

SPFA核心代码:bool SPFA(int s,int n){

queue q;

memset(vis,inf,sizeof(vis));

memset(ven,0,sizeof(ven));

memset(nums,0,sizeof(nums));

vis[s]=0;//初始化距离

ven[s]=1,nums[s]++;//标记s节点在队列,队列次数+1

q.push(s);

while(!q.empty())

{

int x=q.front();

q.pop();//出队

ven[x]=0;//标记不在队列

for(int i=pre[x]; ~i; i=a[i].next)//遍历与x节点连通的点

{

int y=a[i].y;

if(vis[y]>vis[x]+a[i].time)//更新

{

vis[y]=vis[x]+a[i].time;

if(!ven[y])

//由于更新了节点,所以后续以这个为基础的最短路,也要更新下

//所以如果在队列就不用加入,不在的话加入更新后续节点

{

q.push(y);

ven[y]=1;//标记这个节点在队列中

nums[y]++;//记录加入次数

if(nums[y]>n)//如果这个点加入超过n次,说明存在负圈,直接返回

return false;

}

}

}

}

return true;

}

完整代码:#include

#define inf 0x3f3f3f3f

using namespace std;

const int M=10005;

struct A{

int y,time,next;

}a[M<<1];

int pre[M],cent=0;//链式前向星数组

int vis[M],ven[M],nums[M];

//SPFS数组,vis记录最短路,ven记录是否在队列,nums记录入队次数

void add(int x,int y,int k)//链式前向星,加入节点{

a[cent].y=y, a[cent].time=k, a[cent].next=pre[x];

pre[x]=cent++;

}

bool SPFA(int s,int n){

queue q;

memset(vis,inf,sizeof(vis));

memset(ven,0,sizeof(ven));

memset(nums,0,sizeof(nums));

vis[s]=0;//初始化距离

ven[s]=1,nums[s]++;//标记s节点在队列,队列次数+1

q.push(s);

while(!q.empty())

{

int x=q.front();

q.pop();//出队

ven[x]=0;//标记不在队列

for(int i=pre[x]; ~i; i=a[i].next)//遍历与x节点连通的点

{

int y=a[i].y;

if(vis[y]>vis[x]+a[i].time)//更新

{

vis[y]=vis[x]+a[i].time;

if(!ven[y])

//由于更新了节点,所以后续以这个为基础的最短路,也要更新下

//所以如果在队列就不用加入,不在的话加入更新后续节点

{

q.push(y);

ven[y]=1;//标记这个节点在队列中

nums[y]++;//记录加入次数

if(nums[y]>n)//如果这个点加入超过n次,说明存在负圈,直接返回

return false;

}

}

}

}

return true;

}

int main(){

int n,m,t;

int b[M],c[M];

while(cin>>n>>m>>t)

{

cent=0;

memset(pre,-1,sizeof(pre));

for(int i=0;i

{

int x,y,k;

cin>>x>>y>>k;

add(x,y,k);

add(y,x,k);

}

for(int i=0;i

{

cin>>b[i];

}

for(int i=0;i

{

cin>>c[i];

}

int minn=inf;

for(int i=0;i

{

SPFA(b[i],n);

for(int j=0;j

minn=min(minn,vis[c[j]]);

}

cout<

}

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值