SPFA 算法详解(最短路径)
算法优点:
1.时间复杂度比普通的Dijkstra和Ford低。
2.能够计算负权图问题。
3.能够判断是否有负环 (即:每跑一圈,路径会减小,所以会一直循环跑下去)。
算法思想:
我们用数组记录每个结点的最短路径估计值,用邻接表来存储图G。
我们采取的方法是动态逼近法:
1.设立一个先进先出的队列用来保存待优化的结点。
2.优化时每次取出队首结点u,并且用u点当前的最短路径估计值对离开u点所指向的结点v进行松弛操作,如果v点的最短路径估计值有所调整,且v点不在当前的队列中,就将v点放入队尾。
3.这样不断从队列中取出结点来进行松弛操作,直至队列空为止
期望的时间复杂度O(ke), 其中k为所有顶点进队的平均次数,可以证明k一般小于等于2。
实现方法:
1.存入图。可以使用链式前向星或者voctor。
2.开一个队列,先将开始的节点放入。
3.每次从队列中取出一个节点X,遍历与X相通的Y节点,查询比对 Y的长度 和 X的长度+ X与Y的长度
如果X的长度+ X与Y的长度> Y的长度,说明需要更新操作。
1).存入最短路。
2).由于改变了原有的长度,所以需要往后更新,与这个节点相连的最短路。(即:判断下是否在队列,在就不用重复,不在就加入队列,等待更新)。
3).在这期间可以记录这个节点的进队次数,判断是否存在负环。
4.直到队空。
判断有无负环:如果某个点进入队列的次数超过N次则存在负环
模拟过程:
首先建立起始点a到其余各点的最短路径表格
首先源点a入队,当队列非空时:
1、队首元素(a)出队,对以a为起始点的所有边的终点依次进行松弛操作(此处有b,c,d三个点),此时路径表格状态为:
在松弛时三个点的最短路径估值变小了,而这些点队列中都没有出现,这些点需要入队,此时,队列中新入队了三个结点b,c,d
队首元素b点出队,对以b为起始点的所有边的终点依次进行松弛操作(此处只有e点),此时路径表格状态为:
在最短路径表中,e的最短路径估值也变小了,e在队列中不存在,因此e也要入队,此时队列中的元素为c,d,e
队首元素c点出队,对以c为起始点的所有边的终点依次进行松弛操作(此处有e,f两个点),此时路径表格状态为:
在最短路径表中,e,f的最短路径估值变小了,e在队列中存在,f不存在。因此e不用入队了,f要入队,此时队列中的元素为d,e,f
队首元素d点出队,对以d为起始点的所有边的终点依次进行松弛操作(此处只有g这个点),此时路径表格状态为:
在最短路径表中,g的最短路径估值没有变小(松弛不成功),没有新结点入队,队列中元素为f,g
队首元素f点出队,对以f为起始点的所有边的终点依次进行松弛操作(此处有d,e,g三个点),此时路径表格状态为:
在最短路径表中,e,g的最短路径估值又变小,队列中无e点,e入队,队列中存在g这个点,g不用入队,此时队列中元素为g,e
队首元素g点出队,对以g为起始点的所有边的终点依次进行松弛操作(此处只有b点),此时路径表格状态为:
在最短路径表中,b的最短路径估值又变小,队列中无b点,b入队,此时队列中元素为e,b队首元素e点出队,对以e为起始点的所有边的终点依次进行松弛操作(此处只有g这个点),此时路径表格状态为:
在最短路径表中,g的最短路径估值没变化(松弛不成功),此时队列中元素为b
队首元素b点出队,对以b为起始点的所有边的终点依次进行松弛操作(此处只有e这个点),此时路径表格状态为:
在最短路径表中,e的最短路径估值没变化(松弛不成功),此时队列为空了
最终a到g的最短路径为14
例题:
题意:给出几个城市及其连通情况,然后给出多个出发点,和多个终点。求从任意起点出发到任意个终点,最短的那条路。
思路: 求出全部起点的最短路,遍历终点一遍,找最短的路。
SPFA核心代码:bool SPFA(int s,int n){
queue q;
memset(vis,inf,sizeof(vis));
memset(ven,0,sizeof(ven));
memset(nums,0,sizeof(nums));
vis[s]=0;//初始化距离
ven[s]=1,nums[s]++;//标记s节点在队列,队列次数+1
q.push(s);
while(!q.empty())
{
int x=q.front();
q.pop();//出队
ven[x]=0;//标记不在队列
for(int i=pre[x]; ~i; i=a[i].next)//遍历与x节点连通的点
{
int y=a[i].y;
if(vis[y]>vis[x]+a[i].time)//更新
{
vis[y]=vis[x]+a[i].time;
if(!ven[y])
//由于更新了节点,所以后续以这个为基础的最短路,也要更新下
//所以如果在队列就不用加入,不在的话加入更新后续节点
{
q.push(y);
ven[y]=1;//标记这个节点在队列中
nums[y]++;//记录加入次数
if(nums[y]>n)//如果这个点加入超过n次,说明存在负圈,直接返回
return false;
}
}
}
}
return true;
}
完整代码:#include
#define inf 0x3f3f3f3f
using namespace std;
const int M=10005;
struct A{
int y,time,next;
}a[M<<1];
int pre[M],cent=0;//链式前向星数组
int vis[M],ven[M],nums[M];
//SPFS数组,vis记录最短路,ven记录是否在队列,nums记录入队次数
void add(int x,int y,int k)//链式前向星,加入节点{
a[cent].y=y, a[cent].time=k, a[cent].next=pre[x];
pre[x]=cent++;
}
bool SPFA(int s,int n){
queue q;
memset(vis,inf,sizeof(vis));
memset(ven,0,sizeof(ven));
memset(nums,0,sizeof(nums));
vis[s]=0;//初始化距离
ven[s]=1,nums[s]++;//标记s节点在队列,队列次数+1
q.push(s);
while(!q.empty())
{
int x=q.front();
q.pop();//出队
ven[x]=0;//标记不在队列
for(int i=pre[x]; ~i; i=a[i].next)//遍历与x节点连通的点
{
int y=a[i].y;
if(vis[y]>vis[x]+a[i].time)//更新
{
vis[y]=vis[x]+a[i].time;
if(!ven[y])
//由于更新了节点,所以后续以这个为基础的最短路,也要更新下
//所以如果在队列就不用加入,不在的话加入更新后续节点
{
q.push(y);
ven[y]=1;//标记这个节点在队列中
nums[y]++;//记录加入次数
if(nums[y]>n)//如果这个点加入超过n次,说明存在负圈,直接返回
return false;
}
}
}
}
return true;
}
int main(){
int n,m,t;
int b[M],c[M];
while(cin>>n>>m>>t)
{
cent=0;
memset(pre,-1,sizeof(pre));
for(int i=0;i
{
int x,y,k;
cin>>x>>y>>k;
add(x,y,k);
add(y,x,k);
}
for(int i=0;i
{
cin>>b[i];
}
for(int i=0;i
{
cin>>c[i];
}
int minn=inf;
for(int i=0;i
{
SPFA(b[i],n);
for(int j=0;j
minn=min(minn,vis[c[j]]);
}
cout<
}
}